首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
为实现机器人关节在非线性摩擦和外界未知干扰力矩等因素影响下的精确和稳定控制,通过改进LuGre摩擦模型来描述系统的非线性摩擦特性,采用自适应算法进行摩擦补偿来逼近摩擦力的变化,并采用模糊神经网络逼近外界未知干扰力矩对系统的影响.引入正切障碍李雅普诺夫(Lyapunov)函数对输出信号进行约束,使误差被限制在给定范围之内.利用双曲正弦函数跟踪微分器解决了虚拟输入微分引起的“微分爆炸”和一阶滤波器精度差问题,将自适应控制方法与反步控制理论相结合,提出了一种带摩擦补偿的模糊自适应反步控制方法.利用Lyapunov判据证明了闭环系统的所有误差最终一致有界,并通过仿真得出本文所提出的控制方法相比于传统PID与神经网络动态面控制(Radial Basis Function Dynamic Surface Control,RBFDSC),位置跟踪误差分别提高了近7.5%和3%;当LuGre模型参数变化时,自适应算法也可以精确对摩擦力进行跟踪补偿,从而验证了本文所提出的控制策略的有效性和鲁棒性.  相似文献   

2.
针对柔性关节机械臂动力学模型具有非线性、不确定性和未知的外界扰动等问题,提出了基于自回归小波神经网络的自适应动态面控制方法.采用对于非线性系统具有良好学习和快速收敛能力的自回归小波神经网络,在线观测和补偿动力学模型的不确定项.并应用动态面方法设计控制器实现了关节轨迹跟踪控制.仿真和实验结果显示:当存在模型参数不准确及未建模的外部扰动力矩时,控制算法表现出良好的自适应能力,与传统动态面法和PD(比例微分)控制相比较,显著提高了柔性关节的位置跟踪精度.  相似文献   

3.
针对高精度转台直流力矩电机系统中存在的非线性动态摩擦及周期性波动力矩扰动,为提高转台位置的跟踪精度,提出了一种新的重复自适应摩擦补偿方法,将重复控制机制引入到基于自适应控制的摩擦补偿策略中.电机中摩擦模型采用摩擦参数非一致性变化的LuGre动态模型.该方法的控制律包含一个参数自适应律、等效PD控制律和一个重复控制律.其中,参数自适应律用来估计未知模型参数并予以补偿,而插入的重复控制器用来提高系统运动曲线的跟踪性能.Lyapunov方法证明该补偿方法保证了闭环系统全局稳定性和对期望位置信号的渐近跟踪.最后,通过对高精度伺服系统的仿真研究证明了该改进补偿方法的有效性.  相似文献   

4.
欠驱动船舶RBF神经网络路径自适应跟踪控制   总被引:1,自引:0,他引:1  
针对模型参数未知和存在外界干扰的三自由度欠驱动水面船舶路径跟踪控制问题,提出一种RBF神经网络控制器.该算法利用神经网络的函数逼近特性对船舶模型未知的非线性部分在线逼近并与反步法相结合进行设计,同时实现前进速度在线可调.通过Lyapunov稳定性方法分析验证了闭环系统的稳定性.仿真计算验证了该控制策略的有效性.  相似文献   

5.
针对具有参数未知、外界扰动、强耦合、非线性和多变量的滤波减速器传动机器人建立系统数学模型并对其进行自适应RBF神经网络反演法控制。利用自适应RBF在线逼近系统模型中的未知非线性项设计基于自适应RBF神经网络的反演法控制器同时结合Lyapunov稳定性分析方法论证闭环系统的收敛性。所提控制方法有效地抑制诸如参数未知、外界扰动等对滤波减速器传动机器人的性能影响。仿真分析表明所提出自适应RBF神经网络反演控制器实现了滤波减速器传动机器人的高性能位置跟踪控制并具有很好的控制精度和鲁棒性。  相似文献   

6.
针对转台伺服系统中的难以精确建模、易受摩擦和外界不确定干扰的影响等问题,提出了一种基于RBF神经网络的观测器,利用RBF神经可以逼近任意非线性连续函数的特性,逼近模型未知非线性函数f(?)和g(?),并利用观测器得到转速信号,结合滑模控制提高了系统的鲁棒性,实现了无需建模信息和速度测量的滑模控制系统。仿真结果表明,该方法可以实现高精度的位置和速度跟踪,同时也证明了该方法的鲁棒性和有效性,值得在其他非线性系统中推广。  相似文献   

7.
针对机器人中存在非线性不确性项LuGre动态摩擦和非对称死区的问题,提出采用模糊RBF神经网络及模糊逻辑分别对动态摩擦及死区进行补偿,且实时、自适应训练非线性动态摩擦项及非对称死区项的参数,实现对实际机器人系统准确再现的滑模变鲁棒控制算法,并论证了该算法的Lyapunov稳定性。通过在2自由度机器人上的仿真,证明该算法提高了机器人轨迹跟踪精度、控制力矩及摩擦力矩两者的稳定性。同时发现了该机器人控制力矩的脉冲式补偿误差、摩擦模型中存在类菱形吸引子、缺乏死区补偿将导致控制系统极限环振荡等非线性动力学现象,以及死区逆模型中ε的估计对系统的精度有决定性作用。  相似文献   

8.
针对存在参数不确定性和外界未知干扰的欠驱动自主水下航行器(AUV)三维路径跟踪问题,提出一种基于神经网络的反步滑模控制策略.首先,利用虚拟向导的方法建立了欠驱动AUV三维路径跟踪误差模型;其次,基于李雅普诺夫稳定性理论,利用反步法和滑模控制方法设计一种自适应鲁棒控制器,并设计一种在线调节增益切换函数以降低系统抖振,同时采用径向基函数(RBF)神经网络控制技术对AUV系统中不确定参数以及外界非线性干扰进行自适应补偿估计,而后利用李雅普诺夫稳定性理论证明了整个闭环系统的稳定性;最后,针对一种新型飞翼式欠驱动AUV进行数值仿真实验,结果表明所设计控制器可以实现对三维路径的精确跟踪,并对外界非线性干扰具有良好的鲁棒性.  相似文献   

9.
针对位置伺服系统的非线性、外干扰及参数摄动的不确定性,通过引入RBF神经网络对未知干扰和不确定性进行自学习,提高伺服系统的鲁棒性.为了分析伺服系统的不确定性,将系统模型划分为名义模型和不确定模型两部分.其中,名义模型采用状态反馈方法进行控制,不确定部分采用RBF网络作为滑模动态补偿器进行控制,解决了伺服系统不确定性上界难以测量的问题,降低了抖振.仿真结果验证了该设计方案的有效性.  相似文献   

10.
目的 针对具有外界干扰不确定性的柔性关节机械手实际轨迹跟踪稳定性问题,提出一种自适应动态面控 制与神经网络相结合的方法。 方法 对于非线性系统中的函数以及未知参数,根据径向基函数(RBF)神经网 点对其进行逼近,并对来自外界对系统的干扰项,通过设计阻尼项将其补偿,再根据动态面的相 络的特 关知识对该非线性 系统中的控制器进行设计且实现关节轨迹跟踪控制。 结果 仿真结果表明:在非线性系统中,该方法能够克服干扰 不确定性项,实现机械手连杆转角 q 较好的跟踪效果,误差缩在 5%以内,具有较强的跟踪稳定性,且随着时间的进 行,跟踪误差愈发减小且趋向于 0,对于参数的估计以及逼近都达到了理想的阈值。 结论 该方法保证了闭环非线 性系统半全局稳定,又可利用参数调节的方式达到跟踪误差任意小,且设计的控制器不但保证了机械手的位置跟 踪稳定性,而且很好地解决了跟踪抖动问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号