首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应用三因素六水平的均匀设计方法,研究β-环糊精对香葱油香精的包合作用,利用研磨法,筛选出香葱油香精—β-环糊精包合物的较佳制备条件.即温度40℃;研磨时间2.5h;挥发油与β-环糊精质量比为1∶14.在此条件下,包合物收率和挥发油包合率都比较高,分别为98.32%和82.21%.  相似文献   

2.
采用研磨法制备桉叶油与β-环糊精包合物,应用三因素三水平的正交试验设计法进行实验,优选出最佳包合工艺条件是:桉叶油与β-环糊精的投料质量比为1∶10,包合温度为50℃,研磨时间为2h,得包合物的产率和包合率分别为98.01%和93.01%.  相似文献   

3.
大蒜素-β-环糊精包合物的制备及大蒜素的含量测定   总被引:6,自引:0,他引:6  
采用研磨法制备了大蒜素-β-环糊精包合物,用正交设计对包合物制备条件进行了优化.大蒜素-β-环糊精包合物制备的最佳条件:β-环糊精12 g,大蒜素1 mL;温度25 ℃;反应介质pH=6;研磨时间2 h.用气相色谱法测定了包合物中大蒜素的含量.  相似文献   

4.
采用超临界CO2萃取法提取柏子仁油,然后采用β-环糊精饱和水溶液法制备柏子仁油/β-环糊精包合物.以包合物产率为主要筛选指标,考察影响包合工艺的主要因素,并用正交试验优化最佳包合条件.结果表明,在β-环糊精与柏子仁油的质量体积比为10:1,包合温度为70℃,包合时间为60 min,水与β-环糊精的体积质量比为12:1的...  相似文献   

5.
应用三因素六水平均匀设计法实验方案,采用研磨法制备广藿香挥发油-β-环糊精包合物。优选出最佳包合条件是:广藿香挥发油与β-环糊精的投料质量比为1:12,包合温度为50℃,研磨时间为1h。得包合物的产率和包合率分别为96.99%和81.06%。  相似文献   

6.
采用饱合溶液法制备了火麻仁油β-环糊精包合物,以收得率、油利用率、包合率为指标,应用正交试验筛选出包合的最佳条件。经薄层层析、红外光谱法鉴定,证实火麻仁油与β-环糊精确已形成包合物。  相似文献   

7.
β-环糊精超声包合广藿香挥发油的工艺研究   总被引:1,自引:0,他引:1  
考察广藿香挥发油β-环糊精包合物的制备工艺条件.以包合物的包合率作为评价指标,选择挥发油与β-CD的比例、包合温度、超声时间为主要影响因素,进行L9(34)正交试验,优化广藿香挥发油包合物的工艺条件.同时将广藿香挥发油β-环糊精包合物进行表征.结果表明:最佳包合工艺条件为挥发油与β-CD之比为1∶5、超声时间为45 m in、包合温度为50℃.在此条件下广藿香挥发油包合物的包合率可达80.9%.表征结果表明,广藿香挥发油β-环糊精包合物已经形成.因此,超声法制备广藿香挥发油的β-环糊精包合工艺合理可行.  相似文献   

8.
利用环糊精包合技术对羟基酪醇进行包合可以提高其稳定性和利用率.通过比较饱和水溶液法、超声法和研磨法3种环糊精包合技术方法,确定最优的包合方法,再结合正交设计优化包合工艺.羟基酪醇β-环糊精包合物最佳包合方法是饱和水溶液法,最佳工艺为:在恒温50℃条件下,羟基酪醇体积与β-环糊精的质量比为1∶6,搅拌1 h,搅拌速度为1 200 r/min.饱和水溶液法制备羟基酪醇-β-环糊精包合物,方法可行,操作简单,可有效提高羟基酪醇的稳定性.  相似文献   

9.
采用水蒸气蒸馏法对血三七叶中挥发油进行提取和饱和水溶液进行包合,以挥发油提取量和挥发油的包合率作为考察指标,采用L9(34)正交表进行筛选,考察了药材的加水量,浸泡时间,提取时间对挥发油提取率的影响;同时考察了挥发油和β-环糊精β-CYD比例,包合温度,搅拌时间,环糊精和水的比例对挥发油包合效果的影响.优选出了血三七胶囊中血三七叶中挥发油最佳的提取和包合工艺.优选的提取工艺为:将药材粉碎成粗粉,加6倍量的水,浸泡1h后,再提取6h为最佳提取工艺;优选的包合工艺为挥发油与β-环糊精比例为1∶5(mL∶g),β-环糊精与水的比例为1∶12(g∶mL);在40℃下,包合2h.优选的提取工艺提油率高;包合工艺可制得稳定的分子间包合物,且挥发油包合率高.  相似文献   

10.
采用超声法制备氟苯尼考-羟丙基-β-环糊精包合物,并分别采用差热分析法(DSC)、傅里叶红外光谱法(FTR)、X-射线粉末衍射法(XRD)对包合物进行结构表征,运用Chem3D程序初步探讨包合物的形成机制.制备包合物的最佳工艺参数为:氟苯尼考与HP-β-CD投料比(mol/mol)为2.5∶1,超声温度60℃,超声时间5h.在该制备工艺条件下包合物的得率为82.82%,包合率为91.88%.同时经DSC、FTR和XRD确证其包合物已形成.通过Chem3D和红外数据初步确证包合物的形成是由于氟苯尼考与羟丙基-β-环糊精之间形成氢键所致.  相似文献   

11.
通过优化β-环糊精-苯佐卡因包合物(β-CD-benzocaine,β-CD-ben)的制备条件,研究其对苯佐卡因水解速度的影响。具体以β-环糊精、苯佐卡因为原料,水溶液搅拌法为制备方法,在不同投料比(苯佐卡因:β-CD分别为1∶0. 5、1∶1、1∶2和1∶3)、搅拌时间(3 h、5 h和8 h)、包合温度(40℃、55℃和80℃)、干燥后产物洗涤剂(甲醇、乙醇和异丙醇)的条件下,优化包合物的最佳制备条件,即投料比,苯佐卡因∶β-CD=1∶1,搅拌时间5 h,包合温度55℃,干燥后产物洗涤剂选择异丙醇。通过形态表观、电镜分析及X-射线衍射分析对包合物进行表征,并考察5×10﹣6g/mL的苯佐卡因溶液和β-CD-ben包合物溶液在碱性条件下的水解速度。结果表明:优化条件下制备的β-CD-ben包合物在一定程度上降低了苯佐卡因的水解程度。该研究结果对β-CD-ben包合物制备中的影响因素进行了补充,为增加不稳定药物稳定性提供了一定借鉴。  相似文献   

12.
旋光法研究β-环糊精与氧氟沙星的包结   总被引:2,自引:0,他引:2  
用旋光法对一系列不同摩尔配比的β-环糊精/氧氟沙星的中性水溶液进行研究,结果表明,β-环糊精和氧氟沙星可以形成多种包合比的包合物,主要有1∶2、1∶1和2∶1的包合物,包合物的存在形式与溶液中β-环糊精/氧氟沙星的摩尔配比有关,溶液中β-环糊精/氧氟沙星的摩尔配比在1∶1~2.5∶1范围内形成的包合物以1∶1包合物为主。  相似文献   

13.
分别采用饱和水溶液法、研磨法以及冷冻干燥法制备吲哚美辛环糊精包合物,采用差示扫描量热法验证包合物的形成,用紫外分光光度法测量包合物中吲哚美辛药物的含量,计算包合率。结果表明,用研磨法制备的包合物包合率最高,高达61.0%,差示扫描量热图谱说明磺丁基醚-β-环糊精与吲哚美辛形成了包合物。采用研磨法制备磺丁基醚-β-环糊精包合物时能给予较高的能量,可以克服磺丁基醚-β-环糊精分子的空间位阻,使药物分子更容易进入主体分子空腔内,得到较高的包合率。  相似文献   

14.
代金玲 《科学技术与工程》2011,(28):6934-6935,6939
苯乙酮-β-环糊精的包合物在有机反应中有好的不对称选择性。采用了饱和水溶液法制备苯乙酮-β-环糊精的包合物,并用紫外-可见吸收光谱法对包合物进行了分析。实验表明与苯乙酮和β-环糊精的混合溶液相比,包合物的最大特征吸收峰(λmax)有明显变化,证明了包合物的形成。并用等摩尔系列法确定了包合物中苯乙酮与β-环糊精的最大包合比为1∶1。  相似文献   

15.
依折麦布(ezetimibe, EZT)是一种选择性肠道胆固醇抑制剂,然而水溶性差限制了其应用.包合物的制备可以有效提高药物的水溶性,通过饱和水溶液法制备了EZT的羧甲基-β-环糊精包合物,并通过冷冻干燥法得到最终的粉末状包合物.核磁共振、扫描电子显微镜、傅里叶红外光谱和X-射线粉末衍射等结果证实了包合物的成功制备,相溶解度法表明羧甲基-β-环糊精与EZT结合比为1∶1,二者的结合常数为187 M-1,增溶倍数为412倍.溶出实验结果表明包合物的制备明显提高了药物的体外溶出度.  相似文献   

16.
采用固相研磨和饱和水溶液两种方法将非那西丁与β-环糊精制备成包合物,并确定其最佳包合比例1∶3.固体研磨法比饱和水溶液法更易于在实际生产中应用:它耗时少--较饱和水溶液法节省4倍以上的时间;可以在较低温度下制备.  相似文献   

17.
用固相研磨法合成以β-环糊精(β-CD)为主体分子,水杨醛缩邻硝基苯胺(SN)为客体分子的包合物.用红外光谱和紫外-可见分光光度法分析包合物的形成,并用等摩尔系列法和元素分析求得包合比为3∶2的包合物,包合平衡常数Ka=6.28×1015 L4/mol 4.结果表明,包合后的SN分子在水中的溶解度增加1倍,而且稳定性也增加,达到提高生物利用度的目的.比较其他结构相似的水杨醛类化合物的包合数据,β-CD有能力识别同系客体在结构上的细微变化.  相似文献   

18.
用非等温热重法研究 β-环糊精、β-环糊精· 4 -( 4 -硝基苯偶氮 ) -1 -萘酚包合物的脱水反应动力学 .分别用 Coats-Redfern积分法和 Freeman-Carroll微分法求得β-环糊精及其包合物脱水反应动力学参数 :β-环糊精脱水反应级数为 0 ,活化能约为 6 0 k J/mol;β-环糊精· 4 -( 4 -硝基苯偶氮 ) -1 -萘酚包合物脱水反应级数为 1 ,活化能约为 2 2 k J/mol.该包合反应过程是客体分子 4 -( 4 -硝基苯偶氮 ) -1 -萘酚取代了 β-环糊精主体分子空腔内高能包合水的过程 .  相似文献   

19.
制备了β-环糊精与巴西木素的主-客体包合物,并对其包合行为和性能进行研究.采用紫外可见光谱滴定法确定了包合物的包合比和稳定常数;利用X射线粉末衍射(XRD)、量热分析(DSC)和热重分析(TG)对包合物进行了表征;运用量子化学计算和分子对接模拟研究了主-客体的包合机制.结果显示,β-环糊精与巴西木素的包合量比为1∶1;包合物形成后,巴西木素的热稳定性得到了显著改善;量子化学计算表明,巴西木素以单羟基苯环一侧进入β-环糊精空腔时结合能最低,并以氢键作用形成包合物;分子对接模拟表明,结合能最低时优化的构象为巴西木素以单羟基一侧从大口端进入β-环糊精空腔,与量子化学计算结果一致.  相似文献   

20.
芒柄花素-β-环糊精包合物的制备工艺   总被引:1,自引:0,他引:1  
采用饱和水溶液法,通过调节溶液pH值制备出芒柄花素-β-环糊精包合物,并用紫外光谱和红外光谱分析等方法加以鉴定.制备芒柄花素-β-环糊精包合物的产率为73.24±0.39%,包合物在水中的溶解度明显大于芒柄花素单体.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号