首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
加氢装置用双壳程换热器是在壳程筒体内设置一个纵向隔板,隔板穿过管束中心,将管束和壳程分为对称的两部分。从而实现了"纯逆流",使温差校正系数接近于1,并使壳程介质的流速大大提高,因此提高了总传热系数及换热效率。对于壳程成为控制热阻的一侧且介质流速低,需强化壳程传热或壳程可利用压降较大或温差校正系数较小,需提高有效温差或需要减少换热器台数等场合,应优先选用双壳程换热器。但双壳程换热器制造工艺复杂,一次性投资较高。  相似文献   

2.
针对列管式换热器壳程传热膜系数较低、高流速时易产生流体诱发振动、管板与换热管之间存在间隙腐蚀的实际情况,提出了一种无管板列管式换热器结构.该结构提高了壳程的传热膜系数,解决了间隙腐蚀的问题,减小了壳程流体的流动阻力和流体诱发振动,为列管式换热器的结构改造提供了好的形式.  相似文献   

3.
对正方形孔、三角圆头孔、网状孔、六角梅花孔隔板换热器及弓形折流板换热器的传热性能和压降性能进行了测试试验.试验件采用公用管壳可拆卸芯体管束结构,针对其特点将壳侧轴向雷诺数作为自变量,利用单位壳侧轴向欧拉数的壳侧努谢尔特数指标来反映换热器的综合性能.试验结果表明,网状孔隔板换热器的壳侧换热系数与弓形折流板换热器相当,但该换热器的压降较低,在试验范围内综合性能指标的相对值为1.274;六角梅花孔、三角圆头孔和正方形孔隔板换热器的壳侧换热系数和综合性能均不及弓形折流板换热器.此外,不同的异形孔隔板换热器的传热性能与异形孔的形状或通流孔数目有关,流动阻力与通流孔的总面积和水力周长有关.  相似文献   

4.
螺旋折流板换热器换热强化的数值研究   总被引:1,自引:0,他引:1  
针对目前常用螺旋折流板换热器壳程的一个螺距主要采用4块折流板结构而严重影响换热器性能的问题,提出了一种旋梯式折面折流板新结构,用来封闭原始折流板之间的三角漏流区,使壳程流体接近连续的螺旋状流动。模拟结果表明:采用旋梯式折面折流板代替原始的扇形折流板后,换热器壳程流体的切向和径向速度大幅提升,轴向速度略有降低;换热器总传热系数增加51.7%~66.1%,壳程压降增加159.8%~186.2%,换热器的热性能因子提高了10.4%~17.0%,平均增加14.1%。采用旋梯式折面折流板能有效提高螺旋折流板的换热性能,且具有定位和安装简单、方便等优点,对于换热器的节能优化设计具有重要的指导意义。  相似文献   

5.
文章对冷却水在换热器管程流动并与壳程的热油逆流换热条件下,对螺旋隔板三维翅片管换热器的传热与压降性能进行了实验研究,并与光滑管进行了对比.在相同壳程Reynolds数下,三维翅片管的壳程Nusselt数是光滑管的2.2-2.9倍,而压降是光滑管的2.3倍左右.采用计算流体力学软件Fluent 6.0对螺旋隔板三维翅片管和光滑管换热器进行了数值模拟.结果表明,螺旋流条件下光滑管表面速度矢量均匀、稳定,而三维翅片表面的速度矢量因翅片激发流体而产生湍动和不规则的二次流,从而强化了流体的对流传热.对于螺旋隔板三维翅片管换热器,壳程Nusselt数和压降的数值模拟结果与实验计算值吻合良好,最大偏差分别为6.3%和9.8%.  相似文献   

6.
三分螺旋折流板换热器壳侧换热系数的关联式   总被引:4,自引:0,他引:4  
对三分螺旋折流板换热器和对比方案弓形折流板换热器的传热和压降性能进行实验测试,其中,三分螺旋折流板换热器包括倾斜角分别为10,°15,°20°的扇形折流板,倾斜角为15°的椭圆折流板和倾斜角为20°的扇形搭接折流板5种方案.实验结果表明,20°倾斜角扇形折流板方案的壳侧换热系数最高且压降较低;折流板轴向搭接方案并不合理;当量螺旋角对换热器的性能起决定作用.根据实验数据拟合出含有倾斜角修正因子的三分螺旋折流板换热器壳侧换热系数的关联式,所计算的10,°15°和20°扇形折流板方案的数值与实验值相比误差大多小于±10%.  相似文献   

7.
对一种具有并流多通道进出口结构(MPC)的轴流管壳式换热器的壳程局部传热性能进行实验研究,分别在有壳程进口段分布挡板与无分布挡板的情况下,探讨了进口段局部表面传质努塞尔数的分布、局部平均表面努塞尔数与管束位置及雷诺数的关系,分析了进口段和换热器整体的平均传质努塞尔数与雷诺数的变化关系,揭示了壳程进口段的局部表面努塞尔数的分布规律,并进行了机理分析.研究结果表明,分布挡板能够有效促进壳程流场的分布,提高换热器壳程的整体传热性能.  相似文献   

8.
为了节省能源,提高管壳式换热器的热交换效率,采用流路理论分析了强化传热管壳式换热器管程的流量和流速规律,壳程的实际换热面积.分析结果显示均匀分配介质在管程和壳程内流量能有效同时提高管程和壳程的换热面积,达到换热面积的合理匹配,提高总传热系数.通过试验测试表明总传热系数均高于普通换热器的总传热系数,达到了节省能源的目的.  相似文献   

9.
基于流体力学基本原理和周期性充分发展模型理论对换热器壳程流体进行分析。提出一种单弓形小圆孔折流板管束支撑结构,即在传统的单弓形折流板上开孔,减小传热死区和换热管束的振动。利用CFD技术对这种单弓形小圆孔折流板换热器壳程流体的流动和传热性能进行数值模拟。分析结构和操作参数对单弓形小圆孔折流板换热器综合换热性能的影响,利用多元线性回归推导其壳程压降和对流换热系数的准数关系式。研究结果表明:单弓形小圆孔折流板换热器的壳程压降、对流换热系数和综合换热性能分别为传统单弓形折流板换热器的34.25%~50.86%,73.17%~95.29%和1.438 9~2.782 2倍。  相似文献   

10.
采用数值模拟的方法,建立合理简化的缠绕管式换热器的流体动力学模型,考察缠绕管式换热器的壳程结构参数对其流动和换热性能的影响.结果显示,换热器盘管层数的增加并未带来努赛尔数的明显变化,仅阻力系数的增大不足以引起换热器综合性能评价因子数值的波动.随着换热管轴向间距加大,努赛尔数、阻力系数和综合性能评价因子都呈现出先增大后减小的趋势.换热器垫条厚度的增加则会引起努赛尔数的增加,伴随阻力系数降低,综合性能评价因子的数值明显升高.对比后得知,垫条厚度对缠绕管式换热器的换热和流动性能的影响最为显著.研究结果可为缠绕管式换热器优化设计提供参考.  相似文献   

11.
本文对一种具有并流多通道进出口结构轴流管壳式换热器壳程局部传热性能进行实验研究,分别在有分布挡板与无分布挡板的情况下,研究了进口段局部表面Nu的分布、局部平均Nu与管束位置及Re的关系,以及进口段和换热器整体的平均Nu与Re的变化关系。研究结果揭示了壳程进口段的局部表面Nu的分布规律,并给出了合理的机理分析,表明分布挡板能够有效促进壳程流场的分布和提高换热器壳程的整体传热性能。该研究成果可以为换热器的研究和工程应用提供了参考。  相似文献   

12.
来流不均匀分布对换热器传热的影响   总被引:2,自引:0,他引:2  
建立了换热器壳程流速分布不均匀对传热性能影响的数学模型,并从管内轴向流传热与管外横向流传热两个方面,研究了换热器因流道来流流速分布不均匀而造成的传热负荷偏移.研究结果表明,流速不均匀分布对换热器传热性能影响不大;在恒壁温、各流道间无热交换的条件下,当各流道流速不均达到100%时,换热器的传热负荷偏移在1%以内.  相似文献   

13.
为研究壳程多通道管壳式换热器中并列分置管束长宽比锐减对其内部速度场及深度换热性能的影响,抽取具有代表性的单元流路区域建立并列分置管束模型.对长宽比范围在1.85~9.23、传热管数目分别为10,20,30,40和50的5个并列分置管束模型应用FLUENT软件进行了数值模拟.研究结果表明:当管程与壳程轴流段平均速度均为10 m/s时,随长宽比锐减,并列分置管束换热性能下降且壳程阻力显著增加,壳程流体速度分布越来越不均匀.在典型工况下,长宽比大于4.62的并列分置管束中冷流体出口温度高于热流体出口温度,即可以实现深度换热,在长宽比小于3.08的并列分置管束模型中不能实现深度换热.这为壳程多通道管壳式换热器的结构设计提供参考依据.  相似文献   

14.
热流体与冷流体的出口温度比α对换热器的有效传热温差有重要影响,不同的α代表不同的换热深度.为探讨管壳式换热器换热深度与长径比的关系,文中采用流路分析法对换热器壳程折流区域的传热性能进行数学分析,并与纯逆流情况作对比.结果表明:在深度换热的临界点(α=1),折流区域的换热性能远低于逆流换热,应避免折流区域靠近临界点操作;换热器折流与逆流区域传热温差的偏离量随α变化,为避免偏移量过大,应控制折流区域面积占总传热面积的比例;α1时,为使传热温差偏移小于5%,应使折流区域面积占总传热面积的比例小于0.6/R1a,c(R1a,c为临界点逆流冷流体出口、进口温差与算术平均温差之比).文中揭示了现有换热器结构大型化之后难以实现α1的原因,并给出了一种可以增加换热深度受限的有效结构——壳程多通道结构.  相似文献   

15.
主换热器是铅基反应堆的关键热传输部件,直接影响反应堆的经济性与安全性.以液态铅铋冷却自然循环反应堆的管壳式主换热器为研究对象,从换热管长度L、外径do、壁厚c、管间距P这4方面对换热器进行热工水力分析研究,并采用JF因子对换热器的综合性能进行评价,在此基础上,采用贡献比CR及平均信噪比SN评价因子得到最优的结构参数组合A1B2C1D2.研究表明,管长L对换热器性能影响最大,而管间距P对换热器性能的影响几乎可以忽略.  相似文献   

16.
针对普通弓形板换热器折流板后易出现流动死区的现象,对折流板进行优化设计,并提出一种内嵌百叶板换热器.应用计算流体力学软件Fluent得到内嵌百叶板换热器壳程流场分布,并与普通弓形板换热器进行对比,分析百叶角度与百叶数量对换热器性能的影响.结果表明:与普通弓形板换热器相比,百叶可引流部分流体通过折流板,使内嵌百叶板换热器内流动死区面积明显减小,流场分布更加均匀,具有明显的减小壳程流体压降及提高壳程传热系数的作用;在研究范围内,当百叶角度为60°,百叶数量为每组4片时,换热器的综合性能最佳,综合评价因子可达1.76~2.05.  相似文献   

17.
对采用正三角形布管且螺距相同的4种螺旋折流板换热器方案,即倾斜角为20°三分周向重叠(20°TCO)、倾斜角为18°四分周向重叠(18°QCO)、倾斜角为18°首尾相连(18°QEE)以及螺旋角为18.4°的连续(18.4°CH)螺旋折流板换热器的流动和传热性能进行数值模拟.给出了子午切面、同心正六边形切面上速度矢量叠加压力或速度云图分布以及60°扇区的9根换热管和4层同心换热管层的局部热流密度分布.结果表明:每个螺旋周期中均存在二次流,非连续螺旋折流板V形缺口处存在"逆向泄漏",但4种方案中20°TCO方案泄漏量最少;20°TCO方案具有最大壳侧传热因子jo、摩擦系数fo和平均综合性能指标(jo/fo);18°QCO方案中的传热因子jo和摩擦系数fo其次;虽然18.4°CH方案摩擦系数fo最低,但其壳侧传热因子jo和平均综合性能指标(jo/fo)均最差.  相似文献   

18.
螺旋折流板管壳式换热器壳程传热强化研究进展   总被引:42,自引:1,他引:42  
在介绍螺旋折流板管壳式换热器的结构及原理的基础上,对壳程传热强化及阻力特性的研究现状进行了总结,分析了壳侧流体的流动和换热机理,表明螺旋折流板结构是改善壳侧流动换热性能的有效措施.与弓型折流板换热器相比,螺旋折流板换热器的最大特点是单位压降下的壳侧换热系数高.结合具体实例介绍了其在石油化工、能源动力及核能应用等行业中的应用前景.关于螺旋折流板换热器,还有许多问题需要进一步研究,如流动换热的机理以及影响流动换热机理的几何因素、相变情形、介质物性等.  相似文献   

19.
旋梯式螺旋折流板换热器优化结构的数值模拟   总被引:3,自引:0,他引:3  
针对现有螺旋折流板换热器在相邻两块折流板的直边对接处形成三角区漏流而降低换热器换热性能的问题,提出了一种旋梯式螺旋折流板换热器,即旋梯式折面折流板由一块大平板经过两次弯折后形成,其中两平面与管束轴线垂直,另一平面与两平面的夹角(折弯角)相同。对旋梯式螺旋折流板换热器的结构进行了计算流体力学模拟优化,结果表明:利用折面板结构及直边重叠特点,消除了三角区漏流,改善了壳程流场,使得换热器壳程流体流动更接近于螺旋流,换热得以强化;折弯度为0.3、切割百分数为90%、折弯角为37°时,旋梯式螺旋折流板换热器综合性能最优,换热器热性能因子提高了28.4%~30.7%,平均增加了29.9%。该结果可为螺旋折流板换热器的节能优化提供参考。  相似文献   

20.
采用有限元法研究了U型或浮头式换热器管板中的热应力,并考察了管板厚度及管壳程对流换热系数的影响。研究结果表明,对于U型或浮头式换热器,管板内仍存在较大的热应力,这是由于管板上换热管中热量传递造成的,并且当管板较厚时这种应力更为突出;在管程走热流体时,管板两侧表面存在拉伸热应力,降低管板厚度可以有效地降低由热载荷引起的管板壳程侧表面热应力,壳程侧表面热应力可由40 MPa降至-13 MPa;壳程传热系数对管板温度场的影响明显,在换热器设计中使对流换热系数较低的介质走壳程有利于降低管板的热应力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号