首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
M F Lu  C Pressman  R Dyer  R L Johnson  J F Martin 《Nature》1999,401(6750):276-278
Rieger syndrome, an autosomal dominant disorder, includes ocular, craniofacial and umbilical abnormalities. The pitx2 homeobox gene, which is mutated in Rieger syndrome, has been proposed to be the effector molecule interpreting left-right axial information from the early embryonic trunk to each organ. Here we have used gene targeting in mice to generate a loss-of-function allele that would be predicted to result in organ randomization or isomerization. Although pitx2-/- embryos had abnormal cardiac morphogenesis, mutant hearts looped in the normal direction. Pitx2-/- embryos had correctly oriented, but arrested, embryonic rotation and right pulmonary isomerism. They also had defective development of the mandibular and maxillary facial prominences, regression of the stomodeum and arrested tooth development. Fgf8 expression was absent, and Bmp4 expression was expanded in the branchial-arch ectoderm. These data reveal a critical role for pitx2 in left-right asymmetry but indicate that pitx2 may function at an intermediate step in cardiac morphogenesis and embryonic rotation.  相似文献   

3.
Retinoic acid (RA) plays an important role in development of vertebrate embryos. We demonstrate impacts of exogenous RA on the formation of neural crest cells in zebrafish using specific neural crest markers sox9b and crestin. Treatment with all -trans RA at 10−7 mmol/L at 50% epiboly induces sox9b expression in the forebrain and crestin expression in the forebrain and midbrain, resulting in significant increase of pigment cells in the head derived from the cranial neural crest. In addition, RA treatment induces expression of sox9b and crestin in the caudal marginal cells of the neuroectoderm during early segmentation. Earlier commitment of these cells to the neural crest fate in the posterior margins leads to abnormal development of the posterior body, probably by preventing mingling of ventral derived and dorsal-derived cells during the formation of the tailbud.  相似文献   

4.
Hahnloser RH  Kozhevnikov AA  Fee MS 《Nature》2002,419(6902):65-70
Sequences of motor activity are encoded in many vertebrate brains by complex spatio-temporal patterns of neural activity; however, the neural circuit mechanisms underlying the generation of these pre-motor patterns are poorly understood. In songbirds, one prominent site of pre-motor activity is the forebrain robust nucleus of the archistriatum (RA), which generates stereotyped sequences of spike bursts during song and recapitulates these sequences during sleep. We show that the stereotyped sequences in RA are driven from nucleus HVC (high vocal centre), the principal pre-motor input to RA. Recordings of identified HVC neurons in sleeping and singing birds show that individual HVC neurons projecting onto RA neurons produce bursts sparsely, at a single, precise time during the RA sequence. These HVC neurons burst sequentially with respect to one another. We suggest that at each time in the RA sequence, the ensemble of active RA neurons is driven by a subpopulation of RA-projecting HVC neurons that is active only at that time. As a population, these HVC neurons may form an explicit representation of time in the sequence. Such a sparse representation, a temporal analogue of the 'grandmother cell' concept for object recognition, eliminates the problem of temporal interference during sequence generation and learning attributed to more distributed representations.  相似文献   

5.
The interplay of evolution and development has been at the heart of evolutionary theory for more than a century. Heterochrony—change in the timing or rate of developmental events—has been implicated in the evolution of major vertebrate lineages such as mammals, including humans. Birds are the most speciose land vertebrates, with more than 10,000 living species representing a bewildering array of ecologies. Their anatomy is radically different from that of other vertebrates. The unique bird skull houses two highly specialized systems: the sophisticated visual and neuromuscular coordination system allows flight coordination and exploitation of diverse visual landscapes, and the astonishing variations of the beak enable a wide range of avian lifestyles. Here we use a geometric morphometric approach integrating developmental, neontological and palaeontological data to show that the heterochronic process of paedomorphosis, by which descendants resemble the juveniles of their ancestors, is responsible for several major evolutionary transitions in the origin of birds. We analysed the variability of a series of landmarks on all known theropod dinosaur skull ontogenies as well as outgroups and birds. The first dimension of variability captured ontogeny, indicating a conserved ontogenetic trajectory. The second dimension accounted for phylogenetic change towards more bird-like dinosaurs. Basally branching eumaniraptorans and avialans clustered with embryos of other archosaurs, indicating paedomorphosis. Our results reveal at least four paedomorphic episodes in the history of birds combined with localized peramorphosis (development beyond the adult state of ancestors) in the beak. Paedomorphic enlargement of the eyes and associated brain regions parallels the enlargement of the nasal cavity and olfactory brain in mammals. This study can be a model for investigations of heterochrony in evolutionary transitions, illuminating the origin of adaptive features and inspiring studies of developmental mechanisms.  相似文献   

6.
Coronal cavities are large low-density regions formed by hemispheric-scale magnetic flux ropes suspended in the Sun's outer atmosphere. They evolve over time, eventually erupting as the dark cores of coronal mass ejections. Although coronal mass ejections are common and can significantly affect planetary magnetospheres, the mechanisms by which cavities evolve to an eruptive state remain poorly understood. Recent optical observations of high-latitude 'polar crown' prominences within coronal cavities reveal dark, low-density 'bubbles' that undergo Rayleigh-Taylor instabilities to form dark plumes rising into overlying coronal cavities. These observations offered a possible mechanism for coronal cavity evolution, although the nature of the bubbles, particularly their buoyancy, was hitherto unclear. Here we report simultaneous optical and extreme-ultraviolet observations of polar crown prominences that show that these bubbles contain plasma at temperatures in the range (2.5-12)?×?10(5) kelvin, which is 25-120 times hotter than the overlying prominence. This identifies a source of the buoyancy, and suggests that the coronal cavity-prominence system supports a novel form of magneto-thermal convection in the solar atmosphere, challenging current hydromagnetic concepts of prominences and their relation to coronal cavities.  相似文献   

7.
 翼龙是地球上第一类飞向天空也是唯一绝灭的飞行脊椎动物,人类对其产卵繁殖、生长发育和生活习性等方面的了解还十分有限。本文介绍了一件超过200枚哈密翼龙蛋、胚胎和骨骼化石三位一体保存的重要标本,包括16枚翼龙蛋含有三维立体的胚胎化石。针对这件全世界首次发现的3D翼龙胚胎,研究提出哈密翼龙具有相对早熟的胚胎发育模式,其后肢发育速度较前肢快,孵化之后只能走不能飞;胚胎发育期间牙齿尚未萌出,出生后还需要父母照料;从胚胎到亚成年都具有快速生长的骨骼结构;显示哈密翼龙具有群居的生活习性,白垩纪的湖泊风暴导致其集群死亡并快速埋藏。  相似文献   

8.
作者首次通过Brdu-anti-Brdu法标记处于S期细胞核等系列实验表明,视黄酸对斑马鱼早期胚胎的中枢神经系统影响较大,主要表现为由前胸缺损而引起的小头畸形、无眼或无心脏,但后脑及脊髓部分的原始反射弧仍存在,而对尾芽只作用于顶端生长区.另外,利用低浓度的视黄酸还诱导出了过早出现的爪蟾前肢及火鲑鱼晚期尾芽胚的腹鳍,说明视黄酸对软骨的发生依浓度不同而有促进与抑制两方面的作用。  相似文献   

9.
Control of segment number in vertebrate embryos   总被引:1,自引:0,他引:1  
The vertebrate body axis is subdivided into repeated segments, best exemplified by the vertebrae that derive from embryonic somites. The number of somites is precisely defined for any given species but varies widely from one species to another. To determine the mechanism controlling somite number, we have compared somitogenesis in zebrafish, chicken, mouse and corn snake embryos. Here we present evidence that in all of these species a similar 'clock-and-wavefront' mechanism operates to control somitogenesis; in all of them, somitogenesis is brought to an end through a process in which the presomitic mesoderm, having first increased in size, gradually shrinks until it is exhausted, terminating somite formation. In snake embryos, however, the segmentation clock rate is much faster relative to developmental rate than in other amniotes, leading to a greatly increased number of smaller-sized somites.  相似文献   

10.
Scott IC  Blitz IL  Pappano WN  Maas SA  Cho KW  Greenspan DS 《Nature》2001,410(6827):475-478
Twisted gastrulation (TSG) is involved in specifying the dorsal-most cell fate in Drosophila embryos, but its mechanism of action is poorly understood. TSG has been proposed to modify the action of Short gastrulation (SOG), thereby increasing signalling by the bone morphogenetic protein (BMP) Decapentaplegic. SOG, an inhibitor of BMP signalling, is in turn inactivated by the protease Tolloid. Here we identify Tsg gene products from human, mouse, Xenopus, zebrafish and chick. Expression patterns in mouse and Xenopus embryos are consistent with in vivo interactions between Tsg, BMPs and the vertebrate SOG orthologue, chordin. We show that Tsg binds both the vertebrate Decapentaplegic orthologue BMP4 and chordin, and that these interactions have multiple effects. Tsg increases chordin's binding of BMP4, potentiates chordin's ability to induce secondary axes in Xenopus embryos, and enhances chordin cleavage by vertebrate tolloid-related proteases at a site poorly used in Tsg's absence; also, the presence of Tsg enhances the secondary axis-inducing activity of two products of chordin cleavage. We conclude that Tsg acts as a cofactor in chordin's antagonism of BMP signalling.  相似文献   

11.
Long JA  Trinajstic K  Young GC  Senden T 《Nature》2008,453(7195):650-652
The extinct placoderm fishes were the dominant group of vertebrates throughout the Middle Palaeozoic era, yet controversy about their relationships within the gnathostomes (jawed vertebrates) is partly due to different interpretations of their reproductive biology. Here we document the oldest record of a live-bearing vertebrate in a new ptyctodontid placoderm, Materpiscis attenboroughi gen. et sp. nov., from the Late Devonian Gogo Formation of Australia (approximately 380 million years ago). The new specimen, remarkably preserved in three dimensions, contains a single, intra-uterine embryo connected by a permineralized umbilical cord. An amorphous crystalline mass near the umbilical cord possibly represents the recrystallized yolk sac. Another ptyctodont from the Gogo Formation, Austroptyctodus gardineri, also shows three small embryos inside it in the same position. Ptyctodontids have already provided the oldest definite evidence for vertebrate copulation, and the new specimens confirm that some placoderms had a remarkably advanced reproductive biology, comparable to that of some modern sharks and rays. The new discovery points to internal fertilization and viviparity in vertebrates as originating earliest within placoderms.  相似文献   

12.
取典型的胚胎致畸剂——全反式视黄酸对热带爪蟾(Xenopus tropicalis)胚胎进行24,36和48 h暴露.结果表明,2,10和50 μg·L-1视黄酸暴露对胚胎的存活率没有影响,对胚胎的生长和发育却有明显的抑制作用,并导致所有胚胎出现畸形现象,说明视黄酸对热带爪蟾胚胎具有极强的致畸性,同时显示了热带爪蟾胚胎对视黄酸的敏感性.视黄酸主要引起胚胎脑部缩小、眼睛色素减少、围心腔水肿和尾巴弯曲等多种畸形类型. 24,36和48 h后,暴露组脑部畸形指数和眼睛畸形指数较对照组均有明显增加,并表现出较好的浓度-效应关系,而时间-效应关系不明显,表明视黄酸对脑和眼部的影响主要发生在暴露的前24小时;48 h后尾部的畸形指数相对于24 h有明显的升高.将视黄酸导致的胚胎畸形类型与污染物三丁基锡对比,表明视黄酸致畸特征图谱在三丁基锡致畸机制的研究中有重要的参考价值.由此可见,有可能将FETAX实验发展为一种基于致畸机制的发育毒性检测方法.  相似文献   

13.
Vermot J  Pourquié O 《Nature》2005,435(7039):215-220
A striking feature of the body plan of a majority of animals is bilateral symmetry. Almost nothing is known about the mechanisms controlling the symmetrical arrangement of the left and right body sides during development. Here we report that blocking the production of retinoic acid (RA) in chicken embryos leads to a desynchronization of somite formation between the two embryonic sides, demonstrated by a shortened left segmented region. This defect is linked to a loss of coordination of the segmentation clock oscillations. The lateralization of this defect led us to investigate the relation between somitogenesis and the left-right asymmetry machinery in RA-deficient embryos. Reversal of the situs in chick or mouse embryos lacking RA results in a reversal of the somitogenesis laterality defect. Our data indicate that RA is important in buffering the lateralizing influence of the left-right machinery, thus permitting synchronization of the development of the two embryonic sides.  相似文献   

14.
15.
通过考察经石油磺酸盐(PS)浸泡后的载玻片与油、水的接触角以及经石油磺酸盐浸泡后的云母片的表面形貌,研究表面活性剂作用后的固体润湿性。结果表明:对于亲水固体,经低质量浓度的石油磺酸盐作用后,其上因石油磺酸盐单分子层吸附而发生润湿性反转,而经高质量浓度的石油磺酸盐作用后,其上因石油磺酸盐双分子层吸附而保持水湿性,同时其润湿性达到稳定的时间随石油磺酸盐温度的升高而缩短;对于亲油固体,经低温高质量浓度的石油磺酸盐作用后,其润湿性难以改善,而经高温低质量浓度的石油磺酸盐作用后,其润湿性易因油湿性物质脱附而反转,但若此后该溶液继续作用,石油磺酸盐则会在新固体表面发生单层吸附,令其再次亲油;要高效利用表面活性剂改善润湿性,需要综合考虑表面活性剂浓度、温度以及作用时间的影响。  相似文献   

16.
Energetic constraints on the diet of terrestrial carnivores   总被引:9,自引:0,他引:9  
Carbone C  Mace GM  Roberts SC  Macdonald DW 《Nature》1999,402(6759):286-288
Species in the mammalian order Carnivora exhibit a huge diversity of life histories with body sizes spanning more than three orders of magnitude. Despite this diversity, most terrestrial carnivores can be classified as either feeding on invertebrates and small vertebrates or on large vertebrates. Small carnivores feed predominantly on invertebrates probably because they are a superabundant resource (sometimes 90% of animal biomass); however, intake rates of invertebrate feeders are low, about one tenth of those of vertebrate feeders. Although small carnivores can subsist on this diet because of low absolute energy requirements, invertebrate feeding appears to be unsustainable for larger carnivores. Here we show, by reviewing the most common live prey in carnivore diets, that there is a striking transition from feeding on small prey (less than half of predator mass) to large prey (near predator mass), occurring at predator masses of 21.5-25 kg. We test the hypothesis that this dichotomy is the consequence of mass-related energetic requirements and we determine the predicted maximum mass that an invertebrate diet can sustain. Using a simple energetic model and known invertebrate intake rates, we predict a maximum sustainable mass of 21.5 kg, which matches the point where predators shift from small to large prey.  相似文献   

17.
Dishevelled controls cell polarity during Xenopus gastrulation   总被引:11,自引:0,他引:11  
Although cell movements are vital for establishing the normal architecture of embryos, it is unclear how these movements are regulated during development in vertebrates. Inhibition of Xenopus Dishevelled (Xdsh) function disrupts convergent extension movements of cells during gastrulation, but the mechanism of this effect is unclear, as cell fates are not affected. In Drosophila, Dishevelled controls both cell fate and cell polarity, but whether Dishevelled is involved in controlling cell polarity in vertebrate embryos has not been investigated. Here we show, using time-lapse confocal microscopy, that the failure of cells lacking Xdsh function to undergo convergent extension results from defects in cell polarity. Furthermore, Xdsh mutations that inhibit convergent extension correspond to mutations in Drosophila Dishevelled that selectively perturb planar cell polarity. Finally, the localization of Xdsh at the membrane of normal dorsal mesodermal cells is consistent with Xdsh controlling cell polarity. Our results show that polarized cell behaviour is essential for convergent extension and is controlled by vertebrate Dishevelled. Thus, a vertebrate equivalent of the Drosophila planar cell polarity signalling cascade may be required for normal gastrulation.  相似文献   

18.
Jeffery WR  Strickler AG  Yamamoto Y 《Nature》2004,431(7009):696-699
The neural crest, a source of many different cell types in vertebrate embryos, has not been identified in other chordates. Current opinion therefore holds that neural crest cells were a vertebrate innovation. Here we describe a migratory cell population resembling neural crest cells in the ascidian urochordate Ecteinascidia turbinata. Labelling of embryos and larvae with the vital lipophilic dye DiI enabled us to detect cells that emerge from the neural tube, migrate into the body wall and siphon primordia, and subsequently differentiate as pigment cells. These cells express HNK-1 antigen and Zic gene markers of vertebrate neural crest cells. The results suggest that migratory cells with some of the features of neural crest cells are present in the urochordates. Thus, we propose a hypothesis for neural crest evolution beginning with the release of migratory cells from the CNS to produce body pigmentation in the common ancestor of the urochordates and vertebrates. These cells may have gained additional functions or were joined by other cell types to generate the variety of derivatives typical of the vertebrate neural crest.  相似文献   

19.
By using the approach of immunofluorescence staining with an antibody against 5-methylcytosine (5MeC), the present study detected the DNA methylation patterns of cloned ovine embryos. The embryos derived from in vitro fertilization were also examined for reference purpose. The results showed that: (1) during the preimplantation development, cloned embryos displayed a similar demethylation profile to the fertilized embryos; that is, the methylation level decreased to the lowest at 8-cell stage, and then increased again at morulae stage. However, methylation level was obviously higher in cloned embryos than in stage-matched fertilized embryos, especially at 8-cell stage and afterwards; (2) at blastocyst stage, the methylation pattern in cloned embryos was different from that in fertilized embryos. In cloned blastocyst, inner cell mass (ICM) exhibited a comparable level to trophectoderm cells (TE), while in in-vitro fertilized blastocyst the methylation level of ICM was lower than that of TE, which is not consistent with that reported by other authors. These results indicate that DNA methylation is abnormally reprogrammed in cloned embryos, implying that aberrant DNA methylation reprogramming may be one of the factors causing cloned embryos developmental failure.  相似文献   

20.
J S Eisen  P Z Myers  M Westerfield 《Nature》1986,320(6059):269-271
How is the adult pattern of connections between motoneurones and the muscles that they innervate established during vertebrate development? Populations of motoneurones are thought to follow one of two patterns of development: (1) motor axons initially follow stereotyped pathways and project to appropriate regions of the developing muscle or (2) motor axons initially project to some regions that are incorrect, the inappropriate projections being eliminated subsequently. Here we observed individually identified motoneurones in live zebra fish embryos as they formed growth cones and as their growth cones navigated towards their targets. We report that from axogenesis, each motor axon followed a stereotyped pathway and projected only to the specific region of the muscle appropriate for its adult function. In addition, the peripheral arbor established by each motoneurone was restricted to a stereotyped region of its own segment and did not overlap with the peripheral arbor of the other motoneurones in that segment. We conclude that the highly stereotyped pattern of innervation seen in the adult is due to initial selection of the appropriate pathway, rather than elimination of incorrect projections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号