首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autocatalytic synthesis of a tetranucleotide analogue   总被引:2,自引:0,他引:2  
W S Zielinski  L E Orgel 《Nature》1987,327(6120):346-347
As an approach to the study of the kind of chemical process that might have contributed to the origin of life, attempts have been made to develop purely chemical systems in which oligonucleotides self-replicate. Although performed oligonucleotides have been shown to facilitate the formation of their complements from activated mononucleotides, only a restricted range of oligomers are efficient templates and it will clearly be difficult to find a pair of complementary oligomers each of which will facilitate the formation of the other. Many of the difficulties facing the development of a self-replicating system could be overcome by using a pair of complementary substrate molecules that condense together more easily than ribonucleotides. It would also be helpful if each substrate molecule contained equal numbers of purine and pyrimidine bases as, otherwise, there is a tendency for purines to be overrepresented in the products. We have therefore explored the chemistry of 3'-amino-3'-deoxynucleotides and their dimers. We report here that the tetranucleoside triphosphoramidate GNHpCNHpGNHpCN3 acts as a template to catalyse the condensation of GNHpCNH2 and pGNHpCN3, forming further molecules of the template. The system is therefore autocatalytic, and in accordance with elementary theory the amount of product made increases with the square root of the template concentration.  相似文献   

2.
3.
Zerrouki D  Baudry J  Pine D  Chaikin P  Bibette J 《Nature》2008,455(7211):380-382
Chirality is an important element of biology, chemistry and physics. Once symmetry is broken and a handedness is established, biochemical pathways are set. In DNA, the double helix arises from the existence of two competing length scales, one set by the distance between monomers in the sugar backbone, and the other set by the stacking of the base pairs. Here we use a colloidal system to explore a simple forcing route to chiral structures. To do so we have designed magnetic colloids that, depending on both their shape and induced magnetization, self-assemble with controlled helicity. We model the two length scales with asymmetric colloidal dumbbells linked by a magnetic belt at their waist. In the presence of a magnetic field the belts assemble into a chain and the steric constraints imposed by the asymmetric spheres force the chain to coil. We show that if the size ratio between the spheres is large enough, a single helicity is adopted, right or left. The realization of chiral colloidal clusters opens up a new link between colloidal science and chemistry. These colloidal clusters may also find use as mesopolymers, as optical and light-activated structures, and as models for enantiomeric separation.  相似文献   

4.
Enantioselective magnetochiral photochemistry   总被引:4,自引:0,他引:4  
Rikken GL  Raupach E 《Nature》2000,405(6789):932-935
Many chemical and physical systems can occur in two forms distinguished solely by being mirror images of each other. This phenomenon, known as chirality, is important in biochemistry, where reactions involving chiral molecules often require the participation of one specific enantiomer (mirror image) of the two possible ones. In fact, terrestrial life utilizes only the L enantiomers of amino acids, a pattern that is known as the 'homochirality of life' and which has stimulated long-standing efforts to understand its origin. Reactions can proceed enantioselectively if chiral reactants or catalysts are involved, or if some external chiral influence is present. But because chiral reactants and catalysts themselves require an enantioselective production process, efforts to understand the homochirality of life have focused on external chiral influences. One such external influence is circularly polarized light, which can influence the chirality of photochemical reaction products. Because natural optical activity, which occurs exclusively in media lacking mirror symmetry, and magnetic optical activity, which can occur in all media and is induced by longitudinal magnetic fields, both cause polarization rotation of light, the potential for magnetically induced enantioselectivity in chemical reactions has been investigated, but no convincing demonstrations of such an effect have been found. Here we show experimentally that magnetochiral anisotropy--an effect linking chirality and magnetism--can give rise to an enantiomeric excess in a photochemical reaction driven by unpolarized light in a parallel magnetic field, which suggests that this effect may have played a role in the origin of the homochirality of life.  相似文献   

5.
为了探讨含手性蒎烯基联吡啶的手性钼(0)络合物的结构对光谱(特别是CD光谱)性质的影响,合成了两个新型手性钼络合物( )CD452[Mo(CO)4(LRR)]和[Mo(CO)4(LSS)].用元素分析、IR、UV vis、CD、1HNMR和13CNMR等对其进行了充分表征.研究结果表明:两种络合物为一对具有几乎完全相同物理化学性质、配体互为对映体的光学异构体;两者在可见区的CD曲线呈现弱Cotton效应,且大致为镜象对称,说明在相应的手性络合物中,由于联吡啶上相反手性的蒎烯基通过中心金属钼对MLCT发色团产生了手性微扰作用,从而产生诱导CD效应.  相似文献   

6.
The origin of homochirality in living systems is often attributed to the generation of enantiomeric differences in a pool of chiral prebiotic molecules, but none of the possible physiochemical processes considered can produce the significant imbalance required if homochiral biopolymers are to result from simple coupling of suitable precursor molecules. This implies a central role either for additional processes that can selectively amplify an initially minute enantiomeric difference in the starting material, or for a nonenzymatic process by which biopolymers undergo chiroselective molecular replication. Given that molecular self-replication and the capacity for selection are necessary conditions for the emergence of life, chiroselective replication of biopolymers seems a particularly attractive process for explaining homochirality in nature. Here we report that a 32-residue peptide replicator, designed according to our earlier principles, is capable of efficiently amplifying homochiral products from a racemic mixture of peptide fragments through a chiroselective autocatalytic cycle. The chiroselective amplification process discriminates between structures possessing even single stereochemical mutations within otherwise homochiral sequences. Moreover, the system exhibits a dynamic stereochemical 'editing' function; in contrast to the previously observed error correction, it makes use of heterochiral sequences that arise through uncatalysed background reactions to catalyse the production of the homochiral product. These results support the idea that self-replicating polypeptides could have played a key role in the origin of homochirality on Earth.  相似文献   

7.
本文将聚ADP核糖聚合酶基因1.4kb部分序列反向插入真核表达载体pMAMneo和pSMG中,同时12位密码子突变的活化ras癌基因也一同克隆到上述载体中,从而获得具有不同真核基因筛选标记的双基因真核表达重组体pMAMneo-Cl.4-T24,pMAMneo-Cl.4-arT24,及pSMG-Cl.4-T24,上述质粒的构建成功为研究聚ADP核糖基化作用与细胞恶变的关系提供了一种新的分子模型.  相似文献   

8.
本文研究了合成[Co(sep)]~(3+),u-fac-[Co(ida)_2]~-的实验条件,其中,sep=六氮杂双环二十碳烷,ida=亚氨基二乙酸根,光学折分及CD光谱表明[Co(sep)]~(3+)-[Co(ida)_]~-,[Co(en)_(ox)]~+-[Co(ida)_2]~-两手性识别体系的有利缔合离子对均是异手性的,通过对比类似络合物的手性识别,指出络阴离子内的张力大小对手性识别是有影响的。  相似文献   

9.
S F Mason 《Nature》1984,311(5981):19-23
Classical mechanisms proposed for the transition from racemic geochemistry to homochiral biochemistry in terrestrial evolution generally ascribe to chance the particular handed choice of the L-amino acids and the D-sugars by self-replicating systems. The parity-violating weak neutral current interaction gives rise to an energy difference between a chiral molecule and its mirror-image isomer, resulting in a small stabilization of the L-amino acids and the L-peptides in the alpha-helix and the beta-sheet conformation relative to the corresponding enantiomer. The energy difference suffices to break the chiral symmetry of autocatalytic racemic reaction sequences in an open non-equilibrium system.  相似文献   

10.
在不同溶液中合成了一系列均苯二酐(PMDA)型和二苯醚二酐(ODPA)型聚酰胺酸(PAA)。由PMDA和二氨基二苯甲烷(MDA)或3,3‘-二甲基-4,4‘-二氨基二苯甲烷(DMMDA)在N-甲基吡咯烷酮(NMP)中合成的PAA在室温下呈凝胶态,而其它PAA在室温下均为透明溶液。考查了贮存温度、凝胶态、添加分子筛等条件对PAA稳定性的影响。PAA凝胶的贮存稳定性比PAA溶液好,在PAA溶液中加入0.4nm分子筛,有利于其长期贮存。  相似文献   

11.
12.
Pham P  Bertram JG  O'Donnell M  Woodgate R  Goodman MF 《Nature》2001,409(6818):366-370
The UmuD'2C protein complex (Escherichia coli pol V) is a low-fidelity DNA polymerase (pol) that copies damaged DNA in the presence of RecA, single-stranded-DNA binding protein (SSB) and the beta,gamma-processivity complex of E. coli pol III (ref. 4). Here we propose a model to explain SOS-lesion-targeted mutagenesis, assigning specific biochemical functions for each protein during translesion synthesis. (SOS lesion-targeted mutagenesis occurs when pol V is induced as part of the SOS response to DNA damage and incorrectly incorporates nucleotides opposite template lesions.) Pol V plus SSB catalyses RecA filament disassembly in the 3' to 5' direction on the template, ahead of the polymerase, in a reaction that does not involve ATP hydrolysis. Concurrent ATP-hydrolysis-driven filament disassembly in the 5' to 3' direction results in a bidirectional stripping of RecA from the template strand. The bidirectional collapse of the RecA filament restricts DNA synthesis by pol V to template sites that are proximal to the lesion, thereby minimizing the occurrence of untargeted mutations at undamaged template sites.  相似文献   

13.
采用密度泛函理论研究了方形(S,S,S,S)手性环芳化合物的紫外吸收光谱(UV-Vis)和电子圆二色谱(ECD),从微观角度分析了产生UV-Vis、ECD谱吸收的分子轨道电子跃迁情况,解释了分子结构与光学活性的关系.  相似文献   

14.
Insights into DNA recombination from the structure of a RAD51-BRCA2 complex   总被引:23,自引:0,他引:23  
Pellegrini L  Yu DS  Lo T  Anand S  Lee M  Blundell TL  Venkitaraman AR 《Nature》2002,420(6913):287-293
The breast cancer susceptibility protein BRCA2 controls the function of RAD51, a recombinase enzyme, in pathways for DNA repair by homologous recombination. We report here the structure of a complex between an evolutionarily conserved sequence in BRCA2 (the BRC repeat) and the RecA-homology domain of RAD51. The BRC repeat mimics a motif in RAD51 that serves as an interface for oligomerization between individual RAD51 monomers, thus enabling BRCA2 to control the assembly of the RAD51 nucleoprotein filament, which is essential for strand-pairing reactions during DNA recombination. The RAD51 oligomerization motif is highly conserved among RecA-like recombinases, highlighting a common evolutionary origin for the mechanism of nucleoprotein filament formation, mirrored in the BRC repeat. Cancer-associated mutations that affect the BRC repeat disrupt its predicted interaction with RAD51, yielding structural insight into mechanisms for cancer susceptibility.  相似文献   

15.
Lorenzo MO  Baddeley CJ  Muryn C  Raval R 《Nature》2000,404(6776):376-379
The increasing demand of the chemical and pharmaceutical industries for enantiomerically pure compounds has spurred the development of a range of so-called 'chiral technologies' (ref. 1), which aim to exert the ultimate control over a chemical reaction by directing its enantioselectivity. Heterogeneous enantioselective catalysis is particularly attractive because it allows the production and ready separation of large quantities of chiral product while using only small quantities of catalyst. Heterogeneous enantioselectivity is usually induced by adsorbing chiral molecules onto catalytically active surfaces. A mimic of one such catalyst is formed by adsorbing (R,R)-tartaric acid molecules on Cu(110) surfaces: this generates a variety of surface phases, of which only one is potentially catalytically active, and leaves the question of how adsorbed chiral molecules give rise to enantioselectivity. Here we show that the active phase consists of extended supramolecular assemblies of adsorbed (R,R)-tartaric acid, which destroy existing symmetry elements of the underlying metal and directly bestow chirality to the modified surface. The adsorbed assemblies create chiral 'channels' exposing bare metal atoms, and it is these chiral spaces that we believe to be responsible for imparting enantioselectivity, by forcing the orientation of reactant molecules docking onto catalytically active metal sites. Our findings demonstrate that it is possible to sustain a single chiral domain across an extended surface--provided that reflection domains of opposite handedness are removed by a rigid and chiral local adsorption geometry, and that inequivalent rotation domains are removed by successful matching of the rotational symmetry of the adsorbed molecule with that of the underlying metal surface.  相似文献   

16.
From determining the optical properties of simple molecular crystals to establishing the preferred handedness in highly complex vertebrates, molecular chirality profoundly influences the structural, mechanical and optical properties of both synthetic and biological matter on macroscopic length scales. In soft materials such as amphiphilic lipids and liquid crystals, the competition between local chiral interactions and global constraints imposed by the geometry of the self-assembled structures leads to frustration and the assembly of unique materials. An example of particular interest is smectic liquid crystals, where the two-dimensional layered geometry cannot support twist and chirality is consequently expelled to the edges in a manner analogous to the expulsion of a magnetic field from superconductors. Here we demonstrate a consequence of this geometric frustration that leads to a new design principle for the assembly of chiral molecules. Using a model system of colloidal membranes, we show that molecular chirality can control the interfacial tension, an important property of multi-component mixtures. This suggests an analogy between chiral twist, which is expelled to the edges of two-dimensional membranes, and amphiphilic surfactants, which are expelled to oil-water interfaces. As with surfactants, chiral control of interfacial tension drives the formation of many polymorphic assemblages such as twisted ribbons with linear and circular topologies, starfish membranes, and double and triple helices. Tuning molecular chirality in situ allows dynamical control of line tension, which powers polymorphic transitions between various chiral structures. These findings outline a general strategy for the assembly of reconfigurable chiral materials that can easily be moved, stretched, attached to one another and transformed between multiple conformational states, thus allowing precise assembly and nanosculpting of highly dynamical and designable materials with complex topologies.  相似文献   

17.
以外消旋色氨酸(DL-Trp)为模板分子,β-环糊精(β-CD)及其衍生物为单体构建手性环境,改变印迹体系和聚合方法合成了14种印迹聚合物(MIP1~14).采用SEM和N2吸附试验表征优化印迹聚合物MIP14的结构,通过吸附动力学曲线和吸附等温线模型探讨其吸附特性,并结合HPLC分析聚合物对DL-Trp的手性拆分能力.结果表明:MIP14为孔径分布较为均一的中孔材料,主要存在两类结合位点,符合二级动力学模型.MIP14具有良好的手性拆分能力,在含有6种芳香族氨基酸的复杂体系中可特异性拆分DL-Trp,拆分因子1.477,表明以环糊精衍生物直接印迹外消旋混合物来制备手性印迹材料是一条简便而可行的合成路线.  相似文献   

18.
The internal organs of animals often have left-right asymmetry. Although the formation of the anterior-posterior and dorsal-ventral axes in Drosophila is well understood, left-right asymmetry has not been extensively studied. Here we find that the handedness of the embryonic gut and the adult gut and testes is reversed (not randomized) in viable and fertile homozygous Myo31DF mutants. Myo31DF encodes an unconventional myosin, Drosophila MyoIA (also referred to as MyoID in mammals; refs 3, 4), and is the first actin-based motor protein to be implicated in left-right patterning. We find that Myo31DF is required in the hindgut epithelium for normal embryonic handedness. Disruption of actin filaments in the hindgut epithelium randomizes the handedness of the embryonic gut, suggesting that Myo31DF function requires the actin cytoskeleton. Consistent with this, we find that Myo31DF colocalizes with the cytoskeleton. Overexpression of Myo61F, another myosin I (ref. 4), reverses the handedness of the embryonic gut, and its knockdown also causes a left-right patterning defect. These two unconventional myosin I proteins may have antagonistic functions in left-right patterning. We suggest that the actin cytoskeleton and myosin I proteins may be crucial for generating left-right asymmetry in invertebrates.  相似文献   

19.
以异丙基苯钾(n-Cumyl potassium)作引发剂,α-甲基丙烯酰氯为终止剂,用阴离子聚合方法合成了一系列不同分子量、不同组成的新型聚(苯乙烯-环氧乙烷)(疏水-亲水型)嵌段大单体[Poly(St-b-Eo)-MA magromer]。用红外光谱及核磁共振进行了鉴定并测定了它的数均官能度(?)_n,对大单体与苯乙烯、甲基丙烯酸甲酯和甲基丙烯酸在不同条件下的共聚反应也进行了研究。发现反应条件对大单体和烯类单体的共聚速率均有很大影响。  相似文献   

20.
Matter structured on a length scale comparable to or smaller than the wavelength of light can exhibit unusual optical properties. Particularly promising components for such materials are metal nanostructures, where structural alterations provide a straightforward means of tailoring their surface plasmon resonances and hence their interaction with light. But the top-down fabrication of plasmonic materials with controlled optical responses in the visible spectral range remains challenging, because lithographic methods are limited in resolution and in their ability to generate genuinely three-dimensional architectures. Molecular self-assembly provides an alternative bottom-up fabrication route not restricted by these limitations, and DNA- and peptide-directed assembly have proved to be viable methods for the controlled arrangement of metal nanoparticles in complex and also chiral geometries. Here we show that DNA origami enables the high-yield production of plasmonic structures that contain nanoparticles arranged in nanometre-scale helices. We find, in agreement with theoretical predictions, that the structures in solution exhibit defined circular dichroism and optical rotatory dispersion effects at visible wavelengths that originate from the collective plasmon-plasmon interactions of the nanoparticles positioned with an accuracy better than two nanometres. Circular dichroism effects in the visible part of the spectrum have been achieved by exploiting the chiral morphology of organic molecules and the plasmonic properties of nanoparticles, or even without precise control over the spatial configuration of the nanoparticles. In contrast, the optical response of our nanoparticle assemblies is rationally designed and tunable in handedness, colour and intensity-in accordance with our theoretical model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号