首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文运用双度量空间中的广义Krasnoselskii’s压缩不动点定理研究了二阶非线性积分边值问题u″+a(t)f(t,u(t),u′(t))=0,t∈(0,1),u(0)=0,u(1)=α∫~η_0u(s)ds正解的存在唯一性,其中■:[0,1]×[0,∞)×R→[0,∞)连续,且当t_0∈[η,1]时a(t_0)0.  相似文献   

2.
运用上下解方法和拓扑度理论研究了一阶常微分方程多点边值问题{u'(t)=f(t,u(t)),t∈[0,T],u(0)+Σm k=1a_ku(t_k)=c多个解的存在性,其中c∈R,t_k(k=1,2,3,…,m)满足0t_1t_2…t_mT,a_k0均为给定常数,并且满足1+Σm k=1a_k0,f∈C([0,T]×R,R)。实例说明了结果的正确性。  相似文献   

3.
运用单调迭代方法讨论带有积分边界条件的非线性二阶常微分方程边值问题{u"(t)+f(t,u(t))=0,t∈(0,1),u(0)=∫10u(s)g(s)ds,u(1)=0}正解的存在性.其中g∈L1[0,1]为非负函数,∫10(1-s)g(s)ds<1,且f∈C([0,1]×R+,R+).  相似文献   

4.
张建生 《河南科学》2000,18(4):336-338
研究了奇异非线性两点边值问题g′(u′(t) ) =-k(t) [u(t) ]-αu(0 ) =0 ,u(1) =λu′(1)正解的性质及存在性 .这里λ >1是实数 ,g(s)是在 [0 ,1)区间上连续可微的 ,严格单调递增的 ,非负函数  相似文献   

5.
为导出变分学理论的基石——Euler方程,变分学基本引理是极为关键的。该引理断言“设φ(t)为[t_0,t_1]上的连续函数,且对于任何合条件∫_(t0)~(t1)z(t)dt=0的连续函数z(t)均有∫_(t0)~(t1)φ(t)z(t)dt=0,则φ(t)在[t_0,t_1]上必恒取常数值”。本文从以下几个方面对此引理作进一步的探讨: 1°如果把φ(t)所属的函数类C_0进一步扩大,则引理如何? 2°如果把z(t)所属的函数类C_0进一步缩小,引理又有什么变化? 3°如果考虑无穷区间(单向或双向无穷)[t_0,∞),引理是否仍然正确?  相似文献   

6.
研究了三阶非线性系统u′″(t)=f(t,u(t)),t∈[t_1,t_3]在满足边值条件u(t_1)=u′(t_2)=0,γu(t_3)+δu″(t_3)=0下正解的存在性,其中u=(u_1,…,u_n),γ=diag[γ_1,…,γ_n],δ=diag[δ_1,…,δ_n].运用Leray-Schauder型非线性抉择和Krasnosel'skii不动点定理,建立了此问题单个和两个正解的存在性结果,并举例说明了所得结论的有效性.  相似文献   

7.
运用上下解方法和拓扑度理论,研究二阶离散Neumann边值问题{Δ2 u(t-1)+g(t,u(t))=s,t∈[1,T]Z,Δu(0)=Δu(T)=0解的个数与参数s的关系,其中s∈R,g:[1,T]Z×R→R连续,[1,T]Z:={1,2,…,T},存在一个常数s0∈R,使得当s相似文献   

8.
运用Brouwer度理论发展了一维离散p-Laplacian边值问题△(w(k)φp(△u(k-1)))+f(k,u(k))=0,k∈[1,T]Z,u(0)=0,u(T+1)={0的上下解方法,并获得了其多个解的存在性,其中,[1,T]-2Z:={1,2,…,T-1,T},φp(s)=|s|p s,p1,f:[1,T]Z×R→R连续,R=(-∞,+∞),w(k):[1,T+1]Z→(0,+∞).  相似文献   

9.
本文应用上下解方法研究了如下分数阶常微分方程多点边值问题{x~((δ))(t)=f(t,x(t)),t∈[a,b],a0,x(a)+m∑k=1a_kx(t_k)=c解的存在性,其中f:[a,b]×R→R是L~1-Carathéodory函数,δ∈(0,1],c∈R,t_k(k=1,2,…,m)为满足at_1t_2…t_mb,a_k0以及1+m∑k=1a_k0的常数.  相似文献   

10.
对如下的阻尼振动问题:{ü(t) g(t) (u) (t) = ▽F(t,u(t) ),a.e.t∈[0,T],u(0) -u(T) = (u) (0) - (u) (T) =0.此处,T>0,g∈L1(0,T,;R),G(t)=∫1 0 g(s)ds,G(T)=0,F:[0,T]×RN→R,给出其变分原理,并得到2个周期解的存在性定理.  相似文献   

11.
运用θ-凸算子理论研究了带非齐次边界条件的二阶常微分方程边值问题(p(t)u'(t))'+h(t)f(u)=0,t∈(0,1),au(0)-bp(0)u'(0)=α[u]+λ,cu(1)+dp(1)u'(1)=β[u]+{μ正解的存在唯一性,其中:p∈C([0,1],(0,+∞)),h∈C([0,1],[0,+∞)),a,b,c,d∈[0,+∞)为常数,f∈C([0,+∞),[0,+∞)),α[u]=∫10u(s)dA(s),β[u]=∫10u(s)dB(s),A,B为有界变差函数,λ,μ∈[0,+∞)为参数.获得了正解存在唯一的充分条件及其关于参数λ和μ的依赖性.  相似文献   

12.
运用锥上不动点理论研究二阶离散周期边值问题Δ2u(t-1)+a(t)u(t)=λg(t)f(u(t))+c(t),t∈[1,T]Z,u(0)=u(T),Δu(0)=Δu(T).得到了在非线性项f有奇性和无奇性时正解的存在性、多解性和不存在性.  相似文献   

13.
在文献[2]中利用A是(C_0)类紧半群Γ(t)的无穷小,讨论了算子万程u=Au十f(t,u),u(i)=u。t∈[t_0,T];的mild解的存在性。本文以半序理论及Bochner m-可积为工具,去掉T(t)的紧算子条件,不仅证明了mild解的存在性,且给出解的迭代方法。文献[1]有关结果只是本文A=0的特例。  相似文献   

14.
Banach空间二阶积分边值问题的正解   总被引:1,自引:0,他引:1  
讨论了Banach空间二阶边值问题-u″(t)=f(t,u(t)),t∈[0,1],au(0)-bu′(0)=∫0 1 g(s)u(s)ds,cu(1)+du′(1)=∫0 1 h(s)u(s)ds正解的存在性与多重性.通过对非紧性测度的计算,利用严格集压缩映射的不动点理论,给出了该问题正解存在与多个正解存在的充分条件.  相似文献   

15.
用分歧理论考察二阶离散边值问题{-Δ[p(k-1)Δu(k-1)]+q(k)u(k)=λa(k)f(u(k)),k∈[1,N]_Z,g_1(λ,u(0),Δu(0))=0,g_2(λ,u(N+1),Δu(N))=0正解的全局结构,得到了该问题正解存在的最优充分条件.其中:λ0是参数;[1,N]Z={1,2,…,N};p:[0,N+1]Z→+,q,a:[1,N]Z→R~+且对k∈[1,N]Z,a(k)0;g_1∈C(R~+×R~+×R~+,R~+);g_2∈C(R~+×R~+×(-∞,0],R~+);f∈C(R~+,R~~+).  相似文献   

16.
考虑带p-Laplacian算子的四阶四点边值问题φp(u(″t)))″=a(t)(ft,u(t),u(″t)),t∈[0,1],b1u(0)-b2u′(0)=0,b3u(1)+b4u′(1)=0,c1φp(u″(ξ))-c2(φp(u(″ξ)))′=0,c3φp(u(″η))+c4(φp(u(″η)))′=0其中:φp(s)=│s│p-2s,p>1;0<ξ,η<1;bi,ci(i=1,2,3,4)>0,c1c4+c2c3+c1c3(η-ξ)>0;a(t)∈C([0,1],[0,+∞)).通过Avery-Henderson不动点定理得到边值问题存在至少两个正解.  相似文献   

17.
讨论了一类带非齐次边界条件的p-Laplacian方程{(φp(u′(t)))′+f(t,u)=0,t∈[0,1];u′(0)-∫10u′(s)dA(s)=-λ,u(1)-∫10u(s)dB(s)=μ唯一解的存在性.其中:A(s),B(s)为有界变差函数;φp(s)=|s|p-2s,p1;λ,μ∈[0,∞)为参数.得到了正解存在唯一的充分条件.  相似文献   

18.
依据Leray-Schauder型非线性抉择对差分系统Δ2u1(k)+f1(k,u1(k),u2(k))=0 k∈[0,T]Δ2u2(k)+f2(k,u1(k),u2(k))=0 k∈[0,T]u1(0)=u1(T+2)=0=u2(0)=u2(T+2)给出了一个存在性定理.  相似文献   

19.
设 k 为某一自然数,数列{x}、{y}当n>k 时满足y_n=C_0x_n+C_1x_(n-1)+…+C(?),则称{y_n}为{x_n}的相关数列.设 g_1(t),g_2(t),…,g(t)在 u(t_0)内严格单调且连续,g(t_0)=x_0,i=1,2,…,k.g_i(t)的反函数为 g~(-1)(x),它在 u(x_0)内严格单调且连续,g~(-1)(x_0)=t_0,i=1,2,…,k设F(t)=C_1f〔g_1(t)〕+C_2f〔g_2(t)〕+…+Cf〔g(t)〕,且存在 l,1≤l≤k,使|C_1|>(?)|C_i|.  相似文献   

20.
研究了阻尼振动问题{ü(t)+g(t)(u)(t)=(△)F(t,u(t)),a.e.t∈[O,T];u(0)-u(T)=(u)(0)-(u)(T)=0.其中,T>0,g(t)∈L∞(0,T;R),G(t)=∫t0g(s)ds,G(T)=0,F:[0,T]×RN→R.给出了其变分原理和2个周期解的存在性定理.即使在g(t)=0特殊情况下,所得结果也是新的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号