首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In RNA interference (RNAi), double-stranded RNA (dsRNA) is processed into short interfering RNA (siRNA) to mediate sequence-specific gene knockdown. The genetics of plant RNAi is not understood, nor are the bases for its spreading between cells. Here, we unravel the requirements for biogenesis and action of siRNAs directing RNAi in Arabidopsis thaliana and show how alternative routes redundantly mediate this process under extreme dsRNA dosages. We found that SMD1 and SMD2, required for intercellular but not intracellular RNAi, are allelic to RDR2 and NRPD1a, respectively, previously implicated in siRNA-directed heterochromatin formation through the action of DCL3 and AGO4. However, neither DCL3 nor AGO4 is required for non-cell autonomous RNAi, uncovering a new pathway for RNAi spreading or detection in recipient cells. Finally, we show that the genetics of RNAi is distinct from that of antiviral silencing and propose that this experimental silencing pathway has a direct endogenous plant counterpart.  相似文献   

2.
Light-quality regulation of freezing tolerance in Arabidopsis thaliana   总被引:1,自引:0,他引:1  
  相似文献   

3.
The extent of linkage disequilibrium in Arabidopsis thaliana.   总被引:20,自引:0,他引:20  
Linkage disequilibrium (LD), the nonrandom occurrence of alleles in haplotypes, has long been of interest to population geneticists. Recently, the rapidly increasing availability of genomic polymorphism data has fueled interest in LD as a tool for fine-scale mapping, in particular for human disease loci. The chromosomal extent of LD is crucial in this context, because it determines how dense a map must be for associations to be detected and, conversely, limits how finely loci may be mapped. Arabidopsis thaliana is expected to harbor unusually extensive LD because of its high degree of selfing. Several polymorphism studies have found very strong LD within individual loci, but also evidence of some recombination. Here we investigate the pattern of LD on a genomic scale and show that in global samples, LD decays within approximately 1 cM, or 250 kb. We also show that LD in local populations may be much stronger than that of global populations, presumably as a result of founder events. The combination of a relatively high level of polymorphism and extensive haplotype structure bodes well for developing a genome-wide LD map in A. thaliana.  相似文献   

4.
Arabidopsis thaliana has emerged as a model system for studies of plant genetics and development, and its genome has been targeted for sequencing by an international consortium (the Arabidopsis Genome Initiative; http://genome-www. stanford.edu/Arabidopsis/agi.html). To support the genome-sequencing effort, we fingerprinted more than 20,000 BACs (ref. 2) from two high-quality publicly available libraries, generating an estimated 17-fold redundant coverage of the genome, and used the fingerprints to nucleate assembly of the data by computer. Subsequent manual revision of the assemblies resulted in the incorporation of 19,661 fingerprinted BACs into 169 ordered sets of overlapping clones ('contigs'), each containing at least 3 clones. These contigs are ideal for parallel selection of BACs for large-scale sequencing and have supported the generation of more than 5.8 Mb of finished genome sequence submitted to GenBank; analysis of the sequence has confirmed the integrity of contigs constructed using this fingerprint data. Placement of contigs onto chromosomes can now be performed, and is being pursued by groups involved in both sequencing and positional cloning studies. To our knowledge, these data provide the first example of whole-genome random BAC fingerprint analysis of a eucaryote, and have provided a model essential to efforts aimed at generating similar databases of fingerprint contigs to support sequencing of other complex genomes, including that of human.  相似文献   

5.
A complete BAC-based physical map of the Arabidopsis thaliana genome.   总被引:11,自引:0,他引:11  
Arabidopsis thaliana is a small flowering plant that serves as the major model system in plant molecular genetics. The efforts of many scientists have produced genetic maps that provide extensive coverage of the genome (http://genome-www. stanford.edu/Arabidopsis/maps.html). Recently, detailed YAC, BAC, P1 and cosmid-based physical maps (that is, representations of genomic regions as sets of overlapping clones of corresponding libraries) have been established that extend over wide genomic areas ranging from several hundreds of kilobases to entire chromosomes. These maps provide an entry to gain deeper insight into the A. thaliana genome structure. A. thaliana has been chosen as the subject of the first large-scale project intended to determine the full genome sequence of a plant. This sequencing project, together with the increasing interest in map-based gene cloning, has highlighted the requirement for a complete and accurate physical map of this plant species. To supply the scientific community with a high-quality resource, we present here a complete physical map of A. thaliana using essentially the IGF BAC library. The map consists of 27 contigs that cover the entire genome, except for the presumptive centromeric regions, nucleolar organization regions (NOR) and telomeric areas. This is the first reported map of a complex organism based entirely on BAC clones and it represents the most homogeneous and complete physical map established to date for any plant genome. Furthermore, the analysis performed here serves as a model for an efficient physical mapping procedure using BAC clones that can be applied to other complex genomes.  相似文献   

6.
The maternally expressed Arabidopsis thaliana Polycomb group protein MEDEA (MEA) controls expression of the MADS-box gene PHERES1 (PHE1). Here, we show that PHE1 is mainly paternally expressed but maternally repressed and that this maternal repression of PHE1 breaks down in seeds lacking maternal MEA activity. Because Polycomb group proteins control parental imprinting in mammals as well, the independent recruitment of similar protein machineries for the imprinting of genes is a notable example of convergent evolution.  相似文献   

7.
Gaut B 《Nature genetics》2012,44(2):115-116
A new study reports SNP genotypes of over 1,300 Arabidopsis thaliana accessions from throughout Eurasia, providing a resource for genome-wide association studies and studies of local adaptation. The extensive data are also used to identify targets of natural selection and to describe genome-wide patterns of recombination.  相似文献   

8.
9.
Polyploidization is found frequently in plants, and species previously considered to be diploid may show remnants of earlier polyploidization events on closer inspection of their genomes. The success of polyploids may lie in increased genetic redundancy supporting subsequent genetic diversification. Although doubling the genome does not generate diversity per se, recent studies show that rapid genomic rearrangements and changes in DNA modification and gene expression patterns are associated with polyploid formation. But recessive modifications will not become phenotypically apparent in early polyploid generations. Here we show that epialleles in tetraploid plants (but not in diploids) interact in trans and lead to heritable gene silencing persisting after segregation from the inactivating allele. This mechanism, resembling paramutation, leads to the establishment of functional epigenetic homozygosity and, thus, to conversion of new recessive alleles into traits expressed in early polyploid generations. Such interactions probably contribute to rapid adaptation and evolution of polyploid plant species.  相似文献   

10.
11.
Torres MA  Jones JD  Dangl JL 《Nature genetics》2005,37(10):1130-1134
Plant immune responses are usually accompanied by the production of extracellular superoxide at and surrounding infection sites. Extracellular reactive oxygen intermediates (ROIs) in plants were proposed to drive programmed cell death correlated with disease resistance (the hypersensitive response). ROIs derived from this oxidative burst are generated by plasma membrane NADPH oxidases, anchored by gp91(phox) proteins related to those responsible for the respiratory oxidative burst activated in mammalian neutrophils during infection. Mutation of Arabidopsis thaliana respiratory burst oxidase (Atrboh) genes eliminated pathogen-induced ROI production but had only a modest effect on the hypersensitive response. We show that Atrboh function can be activated by exogenous ROIs. Unexpectedly, the subsequent oxidative burst can suppress cell death in cells surrounding sites of NADPH oxidase activation. This cell death requires salicylic acid, a plant immune system activator. Thus, ROIs generated by Atrboh proteins can antagonize salicylic acid-dependent pro-death signals. These results have implications for understanding how salicylic acid activates defense signaling in cells spatially removed from infection sites without causing cell death.  相似文献   

12.
Light has an important role in modulating seedling growth and flowering time. We show that allelic variation at the PHYTOCHROME C (PHYC) photoreceptor locus affects both traits in natural populations of A. thaliana. Two functionally distinct PHYC haplotype groups are distributed in a latitudinal cline dependent on FRIGIDA, a locus that together with FLOWERING LOCUS C explains a large portion of the variation in A. thaliana flowering time. In a genome-wide scan for association of 65 loci with latitude, there was an excess of significant P values, indicative of population structure. Nevertheless, PHYC was the most strongly associated locus across 163 strains, suggesting that PHYC alleles are under diversifying selection in A. thaliana. Our work, together with previous findings, suggests that photoreceptor genes are major agents of natural variation in plant flowering and growth response.  相似文献   

13.
Minisatellites are tandemly repeated DNA sequences of 10-100-bp units. Some minisatellite loci are highly unstable in the human germ line, and structural analysis of mutant alleles has suggested that repeat instability results from a recombination-based process. To provide insights into the molecular mechanism of human minisatellite instability, we developed Saccharomyces cerevisiae strains carrying alleles of the most unstable human minisatellite locus, CEB1 (ref. 2). We observed that CEB1 is destabilized in meiosis, resulting in a variety of intra- and inter-allelic gains or losses of repeat units, similar to rearrangements described in humans. Using mutations affecting the initiation of recombination (spo11) or mismatch repair (msh2 pms1 ), we demonstrate that meiotic destabilization depends on the initiation of homologous recombination at nearby DNA double-strand break (DSBs) sites and involves a 'rearranged heteroduplex' intermediate. Most of the human and yeast data can be explained and unified in the context of DSB repair models.  相似文献   

14.
Telomeres are capping structures at the ends of eukaryotic chromosomes composed of TTAGGG repeats bound to an array of specialized proteins. Telomeres are heterochromatic regions. Yeast and flies with defects in activities that modify the state of chromatin also have abnormal telomere function, but the putative role of chromatin-modifying activities in regulating telomeres in mammals is unknown. Here we report on telomere length and function in mice null with respect to both the histone methyltransferases (HMTases) Suv39h1 and Suv39h2 (called SUV39DN mice). Suv39h1 and Suv39h2 govern methylation of histone H3 Lys9 (H3-Lys9) in heterochromatic regions. We show that primary cells derived from SUV39DN mice have abnormally long telomeres relative to wild-type controls. Using chromatin immunoprecipitation (ChIP) analysis, we found that telomeres were enriched in di- and trimethylated H3-Lys9 but that telomeres of SUV39DN cells had less dimethylated and trimethylated H3-Lys9 but more monomethylated H3-Lys9. Concomitant with the decrease in H3-Lys9 methylation, telomeres in SUV39DN cells had reduced binding of the chromobox proteins Cbx1, Cbx3 and Cbx5, homologs of Drosophila melanogaster heterochromatin protein 1 (HP1). These findings indicate substantial changes in the state of telomeric heterochromatin in SUV39DN cells, which are associated with abnormal telomere elongation. Taken together, the results indicate epigenetic regulation of telomere length in mammals by Suv39h1 and Suv39h2.  相似文献   

15.
Parallel domestication of the Shattering1 genes in cereals   总被引:3,自引:0,他引:3  
  相似文献   

16.
Congenital fibrosis of the extraocular muscles type 1 (CFEOM1; OMIM #135700) is an autosomal dominant strabismus disorder associated with defects of the oculomotor nerve. We show that individuals with CFEOM1 harbor heterozygous missense mutations in a kinesin motor protein encoded by KIF21A. We identified six different mutations in 44 of 45 probands. The primary mutational hotspots are in the stalk domain, highlighting an important new role for KIF21A and its stalk in the formation of the oculomotor axis.  相似文献   

17.
18.
BRIP1 (also called BACH1) is a DEAH helicase that interacts with the BRCT domain of BRCA1 (refs. 1-6) and has an important role in BRCA1-dependent DNA repair and checkpoint functions. We cloned the chicken ortholog of BRIP1 and established a homozygous knockout in the avian B-cell line DT40. The phenotype of these brip1 mutant cells in response to DNA damage differs from that of brca1 mutant cells and more closely resembles that of fancc mutant cells, with a profound sensitivity to the DNA-crosslinking agent cisplatin and acute cell-cycle arrest in late S-G2 phase. These defects are corrected by expression of human BRIP1 lacking the BRCT-interaction domain. Moreover, in human cells exposed to mitomycin C, short interfering RNA-mediated knock-down of BRIP1 leads to a substantial increase in chromosome aberrations, a characteristic phenotype of cells derived from individuals with Fanconi anemia. Because brip1 mutant cells are proficient for ubiquitination of FANCD2 protein, our data indicate that BRIP1 has a function in the Fanconi anemia pathway that is independent of BRCA1 and downstream of FANCD2 activation.  相似文献   

19.
Camurati-Engelmann disease (CED; MIM 131300), or progressive diaphyseal dysplasia, is a rare, sclerosing bone dysplasia inherited in an autosomal dominant manner. Recently, the gene causing CED has been assigned to the chromosomal region 19q13 (refs 1-3). Because this region contains the gene encoding transforming growth factor-beta 1 (TGFB1), an important mediator of bone remodelling, we evaluated TGFB1 as a candidate gene for causing CED.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号