共查询到17条相似文献,搜索用时 94 毫秒
1.
2.
乐茂华 《湖南文理学院学报(自然科学版)》2005,17(1):3-3
设D1,D2是无平方因子正奇数.证明了:当D2 ±1(mod 8)或D2 1,3(mod 8),则方程组x2-D1y2=2s2和x2-D2y2=-2t2没有本原整数解(x,y,s,t). 相似文献
3.
乐茂华 《广西师范学院学报(自然科学版)》2003,20(3)
设D1,D2是无平方因子正整数.该文给出了方程组x2-D1y2=2s2和x2-D2y2=-2t2有本原整数解(x,y,s,t)的必要条件. 相似文献
4.
乐茂华 《广西师范学院学报(自然科学版)》2003,20(3):48-49
设D1,D2是无平方因子正整数,该文给出了方程组x^2-D1y^2=2s^2和x^2-D2y^2=-2t^2有本原整数解(x,y,s,t)的必要条件。 相似文献
5.
椭圆Diophantine方程(x+p)(x2+p2)=y2的本原解 总被引:1,自引:0,他引:1
乐茂华 《杭州师范学院学报(自然科学版)》2004,3(4):307-308
设p是素数.在此给出了方程(x+p)(x2+p2)=y2有适合gcd(x,y)=1且y为奇数的正整数解(x,y)的充要条件. 相似文献
6.
乐茂华 《湖北民族学院学报(自然科学版)》2004,22(3):1-3
设D是可使D-1是奇素数方幂的正整数,给出了确定方程组x^2 Dy^2=1-D和x^2=2z^2-1的全部正整数解(x,y,z)的一般方法. 相似文献
7.
设p,q,r_i均为相异奇素数,且p≡1(mod8),q≡3(mod8),r_i≡5或7(mod8).证明了Pell方程组x~2-2y~2=1,y~2-Dz~2=4当D=2pqr_i时,除了D=34时仅有非平凡解z=±12外,其他情形仅有平凡解z=0。 相似文献
8.
9.
郑惠 《四川理工学院学报(自然科学版)》2012,25(2):95-96
运用初等方法对不定方程ax(x+1)(x+2)(x+3)=by(y+1)(y+2)(y+3)的整数解进行了研究,得到了当a=m4,b=m4-1时方程的非负整数解仅有(x,y)=(0,0)。 相似文献
10.
关于Diophantine方程x2+4n=y3 总被引:1,自引:0,他引:1
证明了不定方程x2+4n=y3(n∈N,x≡0(mod2),x,y∈Z),其中当n≥3时整数解仅有(x,y,n)=(0,4k,3k),(±2×8k,2×4k,3k+1),(±11×8k,5×4k,3k+1),k∈N+. 相似文献
11.
赵开明 《吉首大学学报(自然科学版)》2008,29(2):18-19
利用Pell方程、商高方程本原解,证明了丢番图方程y2+(y+1)2=3x2正整数解的通解公式,并对通解公式作了验证. 相似文献
12.
王龙 《延安大学学报(自然科学版)》2014,(3):4-5,10
利用递归数列和同余式的相关性质证明了不定方程x3+1=122y2仅有整数解( x,y)=(-1,0),然后证明了不定方程x3+8=61y2仅有整数解( x,y)=(-2,0)。 相似文献
13.
赵开明 《四川理工学院学报(自然科学版)》2008,21(3)
文章利用代数数论方法证明了不定方程x~2+49~n=y~3 n∈N,x■7的整数解仅(x,y,n)=(±524,65,1)并且证明了x~2+(P~2)~n=y~3,p是素数的一般解. 相似文献
14.
关于不定方程x(x+1)(x+2)(x+3)=13y(y+1)(y+2)(y+3) 总被引:1,自引:0,他引:1
主要运用Pell方程、递归数列、同余式及(非)平方剩余等一些初等的证明方法,证明了不定方程x(x+1)(x+2)·(x+3)=13y(y+1)(y+2)(y+3)无正整数解.在证明该结论的过程中,对不定方程进行变形和整理,将其化为Pell方程形式.根据得到的Pell方程整数解的情况,从而得到6类整数解.根据原不定方程的情况舍去了两类,剩余4类整数解.本文逐一对每一类整数解用同余式及平方剩余的证明方法进行讨论和证明,最后得到原不定方程无正整数解的结论.根据本文的结论也能得到这个不定方程的全部整数解,它们都为其平凡解,由于比较简单,故文中没有再给出.同时本文证明了不定方程(x2+ 3x+ 1)2-13y2=-12仅有整数解(x,±y)=(0,1),(-3,1),(-2,1),(-1,1),(-14,43),(11,43).本文进一步完善了此类不定方程的正整数解的研究. 相似文献
15.
利用了数论初等方法,讨论了k是有理素数p≡1mod4)且k=e2+1,e∈Z为偶数和k是有理素数P≡3(mod4)的相伴数和,方程x2+k2=y3的解的情况。 相似文献
16.
李杨 《重庆师范大学学报(自然科学版)》2006,23(2):20-22
对于不定方程组a2x2-a1y2=a2-a1,a3y2-a2z2=a3-a2,本文取(a1,a2,a3)=(9,11,40),得不定方程组 11x2-9y2=2,40y2-11z2=29。再进一步构造出一个集合M,M中的数由一个二无线性递归数列确定,在此基础上做一些初等计算,即可求出本文所得的不定方程组的解。 相似文献
17.