首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
在Gleeble-1500热模拟试验机和UTM5305实验机上以不同的变形条件对AZ31镁合金进行高温热变形试验,研究该材料在高温热变形过程中的真应力应变。研究结果证明:在变形过程中的AZ31镁合金的真应力随应变速率增大、变形温度降低而升高。在压缩变形过程中的真应力峰值、真应变和动态再结晶与拉伸变形过程相比有明显差异;该镁合金热变形过程中的真应力为用包含Arrhenius项的Zener-Hollomon参数来描述,其压缩拉伸变形激活能分别为132.38 kJ/mol和Q=255.26 kJ/mol.  相似文献   

2.
AZ31镁合金变形行为的热/力模拟   总被引:3,自引:1,他引:3  
采用GLEEBLE-1500热/力模拟机在变形温度为423~723K,应变速率为0.01~10s^-1,最大变形量为60%的条件下对铸态AZ31镁合金进行热/力模拟研究,并结合热变形后显微组织,分析合金力学性能与显微组织之间的关系。研究结果表明:应变速率和变形温度是影响变形激活能的关键参数;当变形温度一定时,流变应力和应变速率之间呈线性关系,合金的变形激活能在523~573K时变化不大,而在大于573K时增大较快,可用包含Arrheniues项的参数Z描述AZ31镁合金热压缩变形的流变应力行为。  相似文献   

3.
利用Gleeble-3500热模拟试验机,对均匀化退火处理后的铸态AZ61镁合金进行了等温热压缩变形实验,研究了合金在变形温度为220℃~380℃、应变速率为0.001 s-1~10 s-1条件下的热变形行为和组织演变特征,并基于双曲正弦模型建立了合金的本构模型.研究了Zener-Hollomon参数对热压缩变形组织演...  相似文献   

4.
铸态AZ91镁合金的压缩变形行为   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟试验机研究了铸态AZ91镁合金在变形温度为473~673 K,应变速率为0.005~5 s-1条件下的压缩变形行为.结果表明,实验合金的流变应力随变形温度的升高而降低,随应变速率的增大而增大,并且符合Zener-Hollomon参数的幂指数关系.通过对实验数据进行多元回归分析,所得流变应力方程中的参数β、A和变形激活能Q分别为0.101 5,2.386 3×109和175.667 kJ/mol.合金在不同温度阶段呈现不同的组织特征,当变形温度为473 K时,合金显微组织以孪晶、滑移带为主;当变形温度为573~673 K时,则以动态再结晶晶粒为主.为进一步系统研究该合金的塑性加工提供一定的实验依据.  相似文献   

5.
变形参数对AZ31镁合金变形抗力的影响   总被引:1,自引:1,他引:1  
利用Gleeble-1500热模拟试验机对AZ31镁合金在变形温度为250~400℃、变形速率为0.5~3.0s-1下进行热变形模拟实验,得到了AZ31镁合金真实应力-真实应变曲线,并通过光学显微镜观察了试样在变形中的微观组织.结果表明,动态再结晶是该实验条件下晶粒细化的主要机制,变形参数影响了再结晶的程度.  相似文献   

6.
采用Gleeble-1500热/力模拟系统,研究热轧的AZ31镁合金板材在应变速率0.01,0.1,1,5和10 s-1,变形温度473~723 K,预设最大变形量80%条件下的高温塑性变形行为。采用实验得到的真应力-真应变曲线,分析合金流变应力与应变速率、变形温度之间的关系,计算合金高温变形的材料参数和激活能;用Zener-Hollomon参数法建立合金高温变形的本构关系,并比较实测应力与计算得到的应力。研究结果表明:AZ31镁合金高温变形时受应变速率的影响较大,应变速率小于1 s-1时(573~723 K),合金的真应变接近100%,但当应变速率大于5 s-1时,实验温度范围内合金的真应变都小于60%。AZ31镁合金高温变形的流变应力-应变速率-变形温度的关系可用双曲正弦函数描述,激活能随应变速率和变形温度的提高,从110.4 kJ/mol升高到163.2 kJ/mol。实验获得的AZ31镁合金应力-应变本构方程的计算结果与实验结果较吻合。  相似文献   

7.
纯镍N6平面热压缩变形行为及加工图   总被引:1,自引:0,他引:1  
利用Gleeble-3800热模拟试验机对纯镍N6在变形温度800~1100℃,应变速率5~40 s-1,应变量70%条件下进行了高温塑性变形压缩试验,分析纯镍N6高温高应变速率热变形行为,得到了材料在不同变形参数条件下的组织变化规律及流变应力变化曲线,利用动态材料模型绘制出了纯镍N6在不同应变条件下的热加工图。通过对组织及热加工图的分析研究,得出变形温度为1000~1100℃,应变速率为5~7 s-1或20~40 s-1以及变形温度为800~900℃,应变速率为5~10 s-1为纯镍N6材料高温高应变速率热变形的两个合理变形参数区间,在参数区间内N6组织均匀;而流变失稳区变形参数条件下得到的组织比较紊乱,晶粒大小不一。纯镍N6热变形后的晶粒尺寸随变形温度升高及应变速率减小而增大。  相似文献   

8.
AZ31镁合金板温拉伸变形行为的研究   总被引:1,自引:0,他引:1  
通过采用单向拉伸实验, 在DNS200微机控制电子万能试验机上测定了AZ31变形镁合金板料在不同拉伸速度、不同温度下的力学性能,并分析了其特点和原因.利用实验得出的应力应变数据,建立了Fields-Backofen流变应力模型,模型计算的应力应变曲线与实验所得的数据在290~573 K范围内峰值应力出现之前基本吻合.  相似文献   

9.
采用Gleeble-1500热模拟试验机进行热压缩试验,研究Mg-6.3Zn-0.7Zr-0.9Y-0.3Nd合金在变形温度T=623~773K、应变速率ε=0.001~1 S-1时的变形行为,并根据动态材料模型(DMM)建立该合金的热加工图.研究结果表明:该合金在区间1(T=643~703K,ε=0.001~0.1 S-1)以及区间2(T=703~773K,ε=0.005~0.1 s-1)变形时,功率耗散效率均大于30%;区域内合金具有典型的动态再结晶组织,因而两区域对应的变形工艺为该合金的最佳热变形工艺;合金热变形的2个流变失稳区分别为:T=623~643 K,ε=0.1~1 s-1;T=703~760 K,ε=0.3~1 S-1.  相似文献   

10.
高应变率加载下AZ31镁合金板材变形局域化各向异性   总被引:1,自引:1,他引:0  
采用分离式Hopkinson压杆测试了AZ31镁合金板材的动态学性.使用金相显微镜观察微观组织特征.压缩方向与板面法向近似成0°,加载应变率为1200s-1时,变形局域化区域由孪晶组成 应变率为2800s-1时,由相互交叉成一定角度的孪晶带组成.压缩方向与板材法向成90°,加载应变率为1200s-1时,变形局域化区域由相互交叉成一定角度的孪晶组成 加载应变率为2800s-1时,由动态再结晶的小晶粒组成.压缩方向与板面法向成45°时,没有观察到类似的变形局域化.变形局域化降低了AZ31B镁合金的塑性,导致板材塑性各向异性.  相似文献   

11.
为了解决Cr20 Ni80电热合金锻造开裂的问题,在Gleeb-1500D热模拟试验机上对该合金进行热压缩试验,研究变形温度为900~1220℃,应变速率为0.001~10 s-1条件下的热变形行为,并根据动态材料模型建立合金的热加工图.合金的真应力-真应变曲线呈现稳态流变特征,峰值应力随变形温度的降低或应变速率的升高而增加;热变形过程中稳态流变应力可用双曲正弦本构方程来描述,其激活能为371.29 kJ·mol-1.根据热加工图确定了热变形流变失稳区及热变形过程的最佳工艺参数,其加工温度为1050~1200℃,应变速率为0.03~0.08 s-1.优化的热加工工艺在生产中得到验证.  相似文献   

12.
喷射沉积AZ31镁合金微观组织与力学性能   总被引:4,自引:0,他引:4  
采用喷射沉积方法制备了AZ31镁合金沉积柱坯,利用热轧作为后续加工,研究了镁合金的组织变化及材料的性能.实验结果表明:沉积态合金组织均匀,晶粒细小(平均晶粒尺寸约为20μm);热轧变形的致密化过程、动态再结晶以及退火再结晶使合金具有良好的组织结构和力学性能;轧制态试样断口呈现为脆性解理断裂方式,退火态试样断口则表现为脆性和韧性断裂混合机制.  相似文献   

13.
采用Gleeble-1500D型热模拟试验机,在变形温度为250~450 ℃,应变速率为0.01~1 s-1,最大应变量为0.85的条件下,对AZ31-0.5Sr-1.5Y进行单向热压缩实验。对材料的热变形行为和热加工性能进行了研究,建立了合金热变形过程中的本构方程和热加工图,并结合金相显微组织观察对加工图进行了分析。结果表明:AZ31-0.5Sr-1.5Y在热变形过程中的稳态流变应力可用双曲正弦函数关系式进行描述,其应变激活能为186.83 kJ/mol,热加工图分析表明,在本实验条件下,当真应变为0.6时,材料存在着非稳态流变区,其温度为250 ~300 ℃,应变速率为0.3~1 s -1,材料的最佳热加工工艺参数为:温度300~400 ℃,变形速率0.01 ~1 s -1。  相似文献   

14.
The hot deformation behavior of uniform fine-grained GH4720Li alloy was studied in the temperature range from 1040 to 1130℃ and the strain-rate range from 0.005 to 0.5 s?1 using hot compression testing. Processing maps were constructed on the basis of compression data and a dynamic materials model. Considerable flow softening associated with superplasticity was observed at strain rates of 0.01 s?1 or lower. According to the processing map and observations of the microstructure, the uniform fine-grained microstructure remains intact at 1100℃ or lower because of easily activated dynamic recrystallization (DRX), whereas obvious grain growth is observed at 1130℃. Metallurgical instabilities in the form of non-uniform microstructures under higher and lower Zener–Hollomon parameters are induced by local plastic flow and primary γ′ local faster dissolution, respectively. The optimum processing conditions at all of the investigated strains are proposed as 1090–1130℃ with 0.08–0.5 s?1 and 0.005–0.008 s?1 and 1040–1085℃ with 0.005–0.06 s?1.  相似文献   

15.
采用二维弹塑性大变形热力耦合有限元法(FEM),对半连续铸造AZ31镁合金热轧开坯过程第一道次进行模拟,分析变形区内轧件的应力场、应变场的分布及整个热轧过程中的温度场的变化规律.实验结果表明:在轧件变形区内,等效应力沿轧制方向逐渐增大,在中性面附近达到最大值54.1 MPa,随后又逐渐减小;靠近轧件表层σ_x为压应力,靠近心部为拉应力,在变形区σ_y主要为压应力,由表面到中心σ_y逐渐减小;等效应变沿轧制方向逐渐增大,在轧件出口处达到最大值0.253;在整个轧制过程中,轧件内部节点的温度变化缓慢,而表面节点的温度变化剧烈,轧制完成后,表面温度从500℃降低到467℃,中部温度从500℃升高到503.1℃,心部温度从500℃升高到502.2℃.  相似文献   

16.
工业态AZ31B镁合金薄板的拉伸性能与组织变化   总被引:1,自引:0,他引:1  
对厚度为0.8 mm的工业态AZ31B镁合金薄板在室温至400℃条件下进行了轴向拉伸实验,研究了变形过程中的组织与性能变化.结果表明,室温至100℃变形时,显微组织中出现少量孪晶;而200℃及以上变形时发生了动态再结晶.室温下AZ31B镬合全薄板具有较高的强度和较好的塑性;随着变形温度的升高,塑性增加,并呈现出低温超塑性或高应变速率超塑性特征.  相似文献   

17.
钨极氩弧焊(TIG)为镁合金焊接中最常用的一种焊接方法。本文采用直流钨极氩弧焊对6.0 mm厚AZ31镁合金挤压板材进行了双面焊接实验。采用光学显微镜、扫描电镜、拉伸试验机考察分析了焊接接头显微组织与力学性能。显微组织分析表明,AZ31镁合金直流TIG焊接头由母材、热影响区、焊缝区组成,焊缝组织呈现焊丝熔化后凝固组织;在母材热影响区与焊缝区之间坡口处形成过渡区,晶粒细小,为母材与焊丝的熔合区。采用AZ31焊丝焊接接头平均抗拉强度为241.0 MPa,延伸率为13.8%,分别达到了母材的86.0%和63.6%。焊接接头的断裂均位于热影响区,断口呈现韧脆混合断裂特征。  相似文献   

18.
稀土Er对ZK60镁合金变形行为的影响   总被引:1,自引:0,他引:1  
采用Gleeble-1500D热模拟试验机研究了稀土元素Er对ZK60镁合金的热压缩变形行为的影响。通过引入Zener-Hollomon参数和双曲正弦函数构建了ZK60和ZK60-1.0Er镁合金的本构方程,同时采用应变硬化率θ-流变应力σ关系曲线确定动态再结晶发生的临界应力σc值。结果表明:ZK60和ZK60-1.0Er两种镁合金在热压缩变形过程中,随着变形温度T的升高,压缩流变应力σ值均减小;随着应变速率ε?的增加,流变应力σ值均增加。添加稀土元素Er使得ZK60镁合金热压缩变形流变应力σ值和应力指数n值增加,在变形温度为160~320℃时提高了发生动态再结晶的临界应力σc值,稀土相的存在促进了再结晶晶粒的形核,降低了平均变形激活能Qˉ值。  相似文献   

19.
为探索和改善轧制包铝镁合金板的界面结合状况,用气体保护铸造法制备了1060铝板包覆AZ31镁合金铸锭.借助金相显微镜、扫描电镜以及X射线衍射等分析方法,研究了复合铸锭芯材及界面的显微组织和相结构,并进行了硬度测试.发现AZ31镁合金芯材组织由α-Mg基体以及沿晶界分布的不连续网状α-Mg+p+Mg17A112共晶体组成,是一种典型的铸造离异共晶组织.铸造包铝镁合金锭界面形成扩散溶解层,扩散溶解层由α-Mg固溶体层、共晶层(α-Mg+β+Mg17A112)、β-Mg17A112及A1Mg化合物层组成,形成具有多层结构的冶金结合界面.提出了浇注AZ31熔体的瞬间在1060铝板表面形成“熔池”并快速凝固的界面形成机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号