首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于支持向量机的多分类方法研究   总被引:1,自引:0,他引:1  
支持向量机是一种典型的两类分类方法,如何将其扩展到多分类领域是一个重要的问题。本文对现有的多类支持向量机算法作了一定的分析,并提出了一些建议,希望对研究者以后的研究有所帮助。  相似文献   

2.
为了提高网络流量预测准确性,将最小二乘支持向量机应用于网络流量预测。介绍了最小二乘支持向量机的原理与方法,并将该模型应用于实际网络流量预测计算。结果表明,该方法能有效地进行流量预测,相对于BP神经网络和ARMA模型方法,该方法具有更好的预测精度。  相似文献   

3.
支持向量机多类分类方法研究   总被引:1,自引:0,他引:1  
系统地回顾了现有的支持向量机多类分类方法,通过对其原理和实现方法的分析,从训练速度、分类速度和推广能力3个方面对这些方法的优缺点进行了归纳和总结,并得出相关结论.  相似文献   

4.
支持向量机基于统计学习理论,是一种新型通用的有监督的机器学习方法,其核心思想是使结构风险极小化,但是由于需要求解二次规划,使得它在求解大规模数据上具有一定的局限性,尤其是对于多分类问题,现有的支持向量机算法具有很高的复杂性.本文构造了基于线性规划的一对一三类结构支持向量分类器,可以直接利用比较成熟的线性规划算法——预测-校正原对偶内点法,并在此基础上提出了基于预测-校正原对偶内点法的支持向量机的多分类学习算法,这种算法可用于比较庞大的多类别识别问题,并且克服了标准支持向量机的一些缺点,而且模型简单,容易实现.针对UCI数据库上数据进行了实验,结果证实该算法具有较高的可行性和实用性.  相似文献   

5.
针对一致性预测支持向量机的多分类问题,提出了两种多分类算法,分别是基于一致性预测一对多支持向量机算法(One-Vs-Rest Support Vector Machine Algorithm Via Conformal Predictors, OVR SVM CP)和基于一致性预测一对一支持向量机算法(One-Vs-One Support Vector Machine Algorithm Via Conformal Predictors, OVO SVM CP)。首先,将多分类问题转化为二分类问题,利用决策函数定义奇异值函数。然后,对这两种算法进行数值模拟实验,并与OVO SVM、OVO LSSVM、OVO TWSVM、HSVM算法相比较。最后,将两种算法应用于6组真实数据集测试其分类预测效果。仿真实验和真实数据应用结果表明,提出的两种算法预测效果较好,相比于其他3种的支持向量机算法有更高的预测准确率。  相似文献   

6.
提出一种基于双支持向量机的偏二叉树多类分类算法,偏二叉树双支持向量机多类分类算法.该算法综合了二叉树支持向量机和双支持向量机的优势,实现了在不降低分类性能的前提下,大大缩短训练时间.理论分析和UCI(University of California Irvine)机器学习数据库数据集上的实验结果共同证明,偏二叉树双支持...  相似文献   

7.
支持向量机训练及分类算法研究   总被引:2,自引:0,他引:2  
支持向量机(SVM)是在统计学习理论基础上发展起来的一种新的数据挖掘方法,已广泛应用于模式识别与回归分析等领域。针对一些主要的SVM训练算法,比较它们的特点,阐述其中最有代表性的序列最小优化(SMO)算法及其多种改进算法,还讨论一些典型的支持向量机多分类算法及支持向量机多标注算法。最后,指出亟待解决的一些问题。  相似文献   

8.
支持向量机(SVM)是建立在统计学理论基础上的一种机器学习方法,用于解决二类分类问题,如何有效地将其推广到多类分类问题是一个正在研究的课题.总结了现有的主要的支持向量机多类分类算法,并在1-a-1SVM分类算法基础上提出一种二次分类的方法.改良了惩罚因子,提高了不易分的类别之间的可分程度.通过对超光谱图像进行分类实验,结果表明该方法具有较高的分类精度.  相似文献   

9.
目前国内对大学生考研的定性研究居多,很少运用定量的方法建立分析预测模型.本文在参考其它预测体系的基础上,提出了大学生考研预测指标体系.并用三种支持向量机技术对该问题进行了预测,通过具体实例分析获得了较高的预测准确率,得到了不同核下针对该问题的最优预测模型.  相似文献   

10.
文本分类是信息检索与数据挖掘领域的研究热点与核心技术,近年来得到了广泛的关注和快速的发展.其中基于支持向量机的文本分类方法的研究是信息检索领域的一个重要分支.本文首先讨论了该领域的研究状况,接着阐述并分析了在该领域中的主要研究方法以及实例, 最后对该领域研究中存在的问题和方向进行了分析.  相似文献   

11.
姜华  曹红妍 《河南科学》2010,28(8):989-991
基于2002年1月—2008年6月铁路客运量数据,建立了铁路客运量的最小二乘支持向量机预测模型.实验表明,最小二乘支持向量机适合铁路客运量预测,且具有较高的精度.  相似文献   

12.
为了提高网络流量的预测精度,准确描述网络流量变化规律,提出了一种基于向量回归的网络流量预测模型,它能全面刻画网络流量变化趋势.  相似文献   

13.
该文使用支持向量机中的两种核函数,采用grid-search算法、遗传算法、粒子群算法优化参数,建立对吉林市某小区燃气管网日负荷预测的支持向量机模型。将日最高温度、日最低温度、日平均温度、小区人员最高年龄、小区人员最低年龄、小区人员平均年龄作为燃气管网日负荷变化密切相关的主要影响因素,分别作为支持向量机的输入量,将小区人员临时出差、小区临时增加暂住人口等随机因素作为燃气管网日负荷变化密切相关的次要影响因素,将随机因素统一归为支持向量机的一个输入量。采用[0,1]归一化方法,对作为影响因素的输入量数据与日负荷预测输出量数据进行归一化处理。对节假日和工作日的燃气管网日负荷预测采用独立处理方法,避免了相互之间的干扰影响。试验结果表明,采用径向基核函数的支持向量机预测模型对燃气管网日负荷预测拟合程度达到90%以上。  相似文献   

14.
在现有支持向量机(SVM)方法的基础上提出对预测误差进行同步预测的双重预测方法,利用预测到的误差对初步预测值进行校正以提高预测精度.针对误差序列非线性、非平稳以及系统动力信息不足的特点,将经验模态分解(EMD)和支持向量机(SVM)方法结合引入误差序列的预测中.对误差序列的预测分别运用初步训练误差和测试误差对预测集合的误差进行预测,将所得到的误差序列分解为若干固有模态分量(IMF),根据各个IMF不同尺度的特点,选择不同的参数对其进行预测,最终合成原始序列的误差预测值,将所预测到的误差与初步原始序列预测值结合,得到最终的预测值.仿真结果表明该方法能够很好地解决预测滞后性和拐点误差大的缺点,相对于普通的SVM预测方法具有更好的预测精度.  相似文献   

15.
期权定价已成为金融市场的重要组成部分之一。 由于市场是动态的,准确预测期权价格非常困难。 因此,设计和发 展了各种机器学习技术来预测期权价格未来趋势。 比较了支持向量机(SVM)模型和人工神经网络(ANN)模型在期权价格预 测中的有效性。 在测试和训练阶段,2 种模型都使用公开可用的基准数据集 SPY option price-2015 进行测试。 2 种模型均采 用主成分分析(PCA)转换后的数据,以达到更好的预测精度。 另一方面,为了避免过拟合问题,将整个数据集划分为训练集 (70%)和测试集(30%)2 组。 将支持向量机模型与基于均方根误差(RMSE)的神经网络模型的结果进行了比较。 实验结果 表明:神经网络模型优于支持向量机模型,预测的期权价格与相应的实际期权价格吻合良好。  相似文献   

16.
近年来,城市交通拥堵现象越发严重,研究分析了国内外大量关于城市交通拥堵界定与判别的基础上,基于模式识别理论中支持向量机分类算法设计提出一种"畅行"、"一般拥堵"及"严重拥堵"道路拥堵三分类研究模式。以南京市虎踞路这一城市主干道路段为算法实例研究对象,结合实测采集和Vissim仿真拥堵交通流数据,借助Matlab实现设计算法的城市道路拥堵分类和判别,实验结果表现出较好的分类和检测效果,表明设计算法应用城市拥堵判别是可行的,且可以进一步优化提高。  相似文献   

17.
基于支持向量机的机械设备状态趋势预测研究   总被引:17,自引:1,他引:17  
提出了用支持向量机对机械设备状态趋势进行预测的新方法,构造了相应的支持向量回归机,并分别用仿真数据和实际数据对其性能进行了验证.将该支持向量回归机应用于某机组振动信号的预测,采用径向基核函数和合适的参数,使该向量回归机对振动量峰峰值的单步预测误差小于2%,24步预测误差小于5%,表明该算法对机械设备的运行状态趋势具有较好的预测能力.  相似文献   

18.
智能交通系统是目前世界上公认的解决城市交通拥堵问题的最佳措施,而实时准确地交通流量预测则是实现智能交通系统和智能交通诱导控制的重要依据.针对城市交通智能运输系统和交通流的特性,在多元线性回归、支持向量机和改进的BP神经网络等三种预测模型的基础上,提出了基于最小二乘支持向量机方法的交通流组合预测模型.实验预测结果表明该组合预测模型具有较高的预测精度,为交通流量提供了一个更好的预测模型.  相似文献   

19.
周文  宋彬 《科学技术与工程》2008,8(1):142-144148
准确的需求预测是装备保障链敏捷运行的重要条件.针对装备保障链需求预测过程中,需求不确定、样本数量较少的实际情况,采用了一种新的预测方法--支持向量机.该方法基于统计学习理论的原理,较好地解决了小样本、非线性的学习问题.建立了装备保障链需求预测的支持向量机模型.并以某物资的需求预测为例进行实例验证,计算结果表明,这种方法比传统的方法有更好的预测精度.  相似文献   

20.
基于支持向量机的飞机备件消耗预测研究   总被引:1,自引:0,他引:1  
针对影响飞机备件消耗的诸多因子难于在模型中体现的问题,采用支持向量机回归模型,应用于备件的消耗预测。该方法将影响备件消耗的主要因子作为支持向量机预测模型的输入因子,对应的备件消耗量作为输出因子,训练模型,然后输入测试样本进行预测。预测结果表明,相比于GM(1,1)模型和神经网络(ANN)模型,该模型具有较高的预测精度和动态适应性,可为相应的备件保障部门提供科学的决策依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号