首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vasopressin excites hippocampal neurones   总被引:2,自引:0,他引:2  
  相似文献   

2.
3.
4.
G L Westbrook  M L Mayer 《Nature》1987,328(6131):640-643
NMDA (N-methyl-D-aspartate) receptors serve as modulators of synaptic transmission in the mammalian central nervous system (CNS) with both short-term and long-lasting effects. Divalent cations are pivotal in determining this behaviour in that Mg2+ blocks the ion channel in a voltage-dependent manner, and Ca2+ permeates NMDA channels. Zn2+ could also modulate neuronal excitability because it is present at high concentrations in brain, especially the synaptic vesicles of mossy fibers in the hippocampus and is released with neuronal activity. Both proconvulsant and depressant actions of Zn2+ have been reported. We have found that zinc is a potent non-competitive antagonist of NMDA responses on cultured hippocampal neurons. Unlike Mg2+, the effect of Zn2+ is not voltage-sensitive between -40 and +60 mV, suggesting that Zn2+ and Mg2+ act at distinct sites. In addition, we have found that Zn2+ antagonizes responses to the inhibitory transmitter GABA (gamma-aminobutyric acid). Our results provide evidence for an additional metal-binding site on the NMDA receptor channel, and suggest that Zn2+ may regulate both excitatory and inhibitory synaptic transmission in the hippocampus.  相似文献   

5.
6.
7.
Glucose and osmosensitive neurones of the rat hypothalamus   总被引:22,自引:0,他引:22  
Y Oomura  T Ono  H Ooyama  M J Wayner 《Nature》1969,222(5190):282-284
  相似文献   

8.
9.
ATP excites a subpopulation of rat dorsal horn neurones   总被引:11,自引:0,他引:11  
C E Jahr  T M Jessell 《Nature》1983,304(5928):730-733
The peripheral receptive properties and central projections of different classes of dorsal root ganglion neurones are well characterized. Much less is known about the transmitters used by these neurones. Excitatory amino acids have been proposed as sensory transmitters but the sensitivity of virtually all central neurones to those compounds has made it difficult to assess their precise role in sensory transmission. Several neuropeptides have been localized within discrete subclasses of primary sensory neurones that project to the superficial dorsal horn of the spinal cord and may be afferent transmitters. However, only about one-third of spinal sensory neurones have been shown to contain neuropeptides. We have recently described the presence of a 5'-nucleotide hydrolysing acid phosphatase in a separate subpopulation of dorsal root ganglion neurones that project to the superficial dorsal horn. This enzyme also appears in certain autonomic and endocrine cells that contain high concentrations of releasable nucleotides in their storage granules. It is possible that the presence of this enzyme in sensory neurones is also associated with a releasable pool of nucleotides. Holton and Holton have provided evidence that ATP is released from the peripheral terminals of unmyelinated sensory fibres and have suggested that release of ATP might also occur from central sensory terminals. To investigate the possibility that nucleotides act as central sensory transmitters we have examined their actions on rat dorsal horn and dorsal root ganglion neurones maintained in dissociated cell culture. We report here a selective and potent excitation of subpopulations of both neuronal types by ATP.  相似文献   

10.
The dopamine (DA) innervation to the forebrain arises from subpopulations of midbrain DA neurones broadly classified as nigrostriatal, mesolimbic and mesocortical. Significant differences in the autoregulatory mechanisms and neuronal inputs of these DA pathways may account for their differences in physiological and pharmacological responsiveness. For example, footshock stress can activate rat mesocortical DA cells but does not alter nigrostriatal DA turnover, while also decreasing substance P (SP) concentrations in the midbrain interpeduncular nucleus and in the adjacent ventral tegmental area (VTA), but not in the substantia nigra (SN). This suggested that the activation of the SP input to the VTA may mediate activation of certain DA systems by footshock stress; behavioural studies also had suggested an excitatory effect of SP on DA cells in the VTA. SP antagonists now available are neurotoxic and of questionable efficacy, we therefore used monoclonal antibody against SP. Antibody microinjected into the VTA prevented normal footshock-induced activation of mesocortical DA neurones, suggesting mediation by SP input to the VTA. The in vivo application of antibodies may prove valuable in studies of neuropeptides in the central nervous system (CNS).  相似文献   

11.
Excitatory amino acids act via receptor subtypes in the mammalian central nervous system (CNS). The receptor selectively activated by N-methyl-D-aspartic acid (NMDA) has been best characterized using voltage-clamp and single-channel recording; the results suggest that NMDA receptors gate channels that are permeable to Na+, K+ and other monovalent cations. Various experiments suggest that Ca2+ flux is also associated with the activation of excitatory amino-acid receptors on vertebrate neurones. Whether Ca2+ enters through voltage-dependent Ca2+ channels or through excitatory amino-acid-activated channels of one or more subtype is unclear. Mg2+ can be used to distinguish NMDA-receptor-activated channels from voltage-dependent Ca2+ channels, because at micromolar concentrations Mg2+ has little effect on voltage-dependent Ca2+ channels while it enters and blocks NMDA receptor channels. Marked differences in the potency of other divalent cations acting as Ca2+ channel blockers compared with their action as NMDA antagonists also distinguish the NMDA channel from voltage-sensitive Ca2+ channels. However, we now directly demonstrate that excitatory amino acids acting at NMDA receptors on spinal cord neurones increase the intracellular Ca2+ activity, measured using the indicator dye arsenazo III, and that this is the result of Ca2+ influx through NMDA receptor channels. Kainic acid (KA), which acts at another subtype of excitatory amino-acid receptor, was much less effective in triggering increases in intracellular free Ca2+.  相似文献   

12.
13.
A subpopulation of rat dorsal root ganglion neurones is catecholaminergic   总被引:3,自引:0,他引:3  
J Price  A W Mudge 《Nature》1983,301(5897):241-243
The neurotransmitters used by the sensory neurones of the dorsal root ganglia (DRG) are unknown. A proportion of these cells contain physiologically active peptides; for example, subpopulations of small-diameter neurones contain substance P or somatostatin. Although these peptides probably have some influence on synaptic transmission in the dorsal horn of the spinal cord, their status as neurotransmitters is uncertain and it is possible that they coexist with conventional neurotransmitters. In addition, the neurones containing identified peptides account for only a fraction of the DRG sensory neurones. There is evidence that the DRG contain catecholamines within fibres thought to be autonomic, but these substances have not been found within the sensory cell bodies themselves. Moreover, the apparently inappropriate, inhibitory physiological effect of catecholamines in the dorsal horn has argued against their being primary sensory neurotransmitter molecules. We have used here antisera against tyrosine hydroxylase (TH; EC 1.14.16.2) and dopamine-beta-hydroxylase (DBH; EC 1.14.17.1), two enzymes specific to catecholaminergic cells, to show that a subpopulation of rat DRG neurones is catecholaminergic and that the neurotransmitter they make is probably dopamine. We believe this to be the first report of catecholaminergic sensory neurones.  相似文献   

14.
N J Uretsky  L L Iversen 《Nature》1969,221(5180):557-559
  相似文献   

15.
16.
W G Regehr  J A Connor  D W Tank 《Nature》1989,341(6242):533-536
The dynamic response of nerve cells to synaptic activation and the spatial distribution of biochemical processes regulated by ion concentration are critically dependent on the cell-surface distribution of ion channels. In the hippocampus, intracellular calcium-ion concentration is thought to influence the biochemical events associated with kindling, excitotoxicity, and long-term potentiation. Computer models of hippocampal pyramidal cells also indicate that calcium-channel location influences dynamic characteristics such as bursting. Here, we have used in situ microfluorometric imaging in brain slices to directly measure the spatial distribution of calcium accumulation in guinea-pig CA1 pyramidal cells during trains of orthodromic synaptic stimulation. Calcium accumulation is substantial throughout the entire proximal section of the apical and basal dendrites. Most of this accumulation results from influx through non-NMDA (N-methyl-D-aspartate) voltage-gated calcium channels, and in the apical dendrite it drops steeply as the dendrite enters stratum moleculare, the termination zone of perforant path afferents. These results demonstrate a marked segregation of calcium-channel activity and directly show a spatial distribution of calcium accumulation during orthodromic synaptic activation.  相似文献   

17.
O Isacson  P Brundin  P A Kelly  F H Gage  A Bj?rklund 《Nature》1984,311(5985):458-460
In rats, striatal neuronal destruction by so-called excitotoxic amino acids, kainic acid or ibotenic acid (IA) produce neuropathological and neurochemical changes in the basal ganglia which resemble those seen in patients with Huntington's chorea. Such lesioned animals show a behavioural syndrome which is reminiscent of the cardinal symptoms of the disease, accompanied by a substantial increase in local cerebral metabolic activity in several striatal target structures within the extrapyramidal motor system. The study was designed to explore the potential of grafted fetal striatal neurones implanted into the IA-lesioned striatum to compensate for the structural, neurochemical, metabolic and behavioural defects of IA-lesioned rats. Extending previous studies, we report here that such striatal implants can significantly ameliorate the lesion-induced locomotor hyperactivity and at least partly normalize the metabolic hyperactivity in the extrapyramidal neuronal system.  相似文献   

18.
E Mezey  J Z Kiss  L R Skirboll  M Goldstein  J Axelrod 《Nature》1984,310(5973):140-141
In response to stress, adrenocorticotropic hormone (ACTH) is released by corticotrophs in the anterior pituitary under the control of several central and peripheral factors including corticotropin-releasing factor (CRF), which was recently isolated from the brain and sequenced. Immunocytochemical studies have shown that most of the CRF-containing cell bodies that project to the median eminence are present in the hypothalamic paraventricular nucleus (PVN). A dense PNMT(phenylethanolamine-N-methyltransferase)-containing fibre network was also observed in the same region--PNMT is the final enzyme in the biosynthesis of adrenaline and has been demonstrated in the brain. In the present study we found an association of adrenergic nerve fibres and CRF neurones by immunohistochemistry using antisera to PNMT and CRF. To examine the functional significance of the adrenergic projection to the PVN, we blocked the synthesis of adrenaline using a specific inhibitor of PNMT. The depletion of adrenaline resulted in an increase in CRF immunoreactivity. The present results suggest that, as well as catecholamines which regulate ACTH release at the anterior pituitary level via a beta 2-adrenergic receptor mechanism, central catecholamines (mainly adrenaline) also affect ACTH release through their action on CRF cells. Peripheral catecholamines seem to have a direct stimulatory effect on the pituitary corticotroph cells, whereas the present findings suggest that central adrenaline-containing neurones have an inhibitory role in the physiological response to stress.  相似文献   

19.
20.
B B Stanfield  D D O'Leary  C Fricks 《Nature》1982,298(5872):371-373
The pyramidal tract, comprising those axons which pass from the neocortex to the medulla and spinal cord, is among the most thoroughly studied projections of the mammalian cortex. Recent studies using anterograde axon tracing techniques have provided information concerning the time course of the growth of pyramidal tract fibres, yet much remains to be learned about its development. We have now begun to study the distribution of the neurones of origin of the pyramidal tract during the postnatal development of the rat neocortex using the recently introduced retrogradely transported fluorescent marker, True blue. During the first postnatal week, injections of True blue into the pyramidal decussation result inthe labelling of pyramidal tract neurones which are distributed virtually throughout the tangential extent of layer V of the neocortex, whereas after comparable injections during the fourth postnatal week the distribution of such cells is much more restricted and remains restricted into adult life. This developmental restriction is most dramatic in the occipital cortex: during the first postnatal week many pyramidal tract neurones are found throughout the visual cortex while none is seen in this area of the adult. When True blue is injected into the pyramidal decussation during the first postnatal week and the animals are allowed to survive until the fourth postnatal week, the distribution of pyramidal tract neurones is as widespread as in the immediate postnatal period and includes the entire visual cortex. This implies that many of the neurones in the occipital cortex initially send a collateral into the pyramidal tract which is later eliminated, although the neurones themselves persist. These findings, together with similar recent observations on the development of the callosal connections, indicate that the elimination of axon collaterals may be a general feature of the development of cortical projection systems, and that such transitory collaterals may traverse considerable distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号