首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 408 毫秒
1.
设 f(z)是一个下级为μ的整函数,记 f(z)的有穷亏值数目为 p,判别有穷渐近值数目为 l.本文证明了如下结果:假设 f(z)的亏量总和Δ(f)(?)=(a,f)=2,δ(a,f)>0,则有 p+l≤2μ.  相似文献   

2.
对于λ(0<λ<∞)级整函数f(z),杨乐、张广厚获得:若f(z)的Borel方向总数q有穷。则f(z)的有穷亏值总数P<2λ。本文类似[1]的证明方法得到:整函数f(z)的下级μ有穷,设q为f(z)至少μ级Borel方向总数,若q<+∞,则f(z)的有穷亏值数p<2μ。其中f(z)至少μ级Borel方向指由原点发出的半直线B:argz-θ_0(0≤θ_0<2π),对于任意正数ε和每个复数a都有 (?)(logn(r,θ.,ε,f=a)/logr≥μ (*)至多除去两个例外的复数。  相似文献   

3.
杨乐、张广厚证明了:对於有穷正级整函数f(z),若P为f(z)的亏值总数,q是f(z)的Borel方向总数,则P≤q/2。定义1 设f(z)为亚纯函数,a(z)为∞或亚纯函数,满足  相似文献   

4.
研究Taylor展式有缺项的整函数的有穷亏值的存在性问题,证明了:设f(z)是一个下级有穷整函数,若f(z)=∑∞n=0cnzλn的残存指数序列λn(n=1,2,…)满足λn≥n (log2n)1+η,η>0,则f(z)不存在有穷亏值.  相似文献   

5.
本文是研究整函数的增长性.应用无穷级整函数的对数级与对数型的定义,以及参考文献[2]中的一些结果,进一步得到了关于无穷级整函数对数级与对数型的一些重要性制裁.现将主要结果叙述于下:定理1:设整函数f(Z)=sum from n=0 to ∞ a_nZ~n的对数级为ρ1,则有ρ1=(?)定理2:设整函数f(Z)=sum from n=0 to∞(a_nZ~n)的对数级为ρ_1,并且0<ρ_1<+∞,其对数型为σ_1,则有定理3:设整函数f(z)=sum from n=0 to∞( a_nZ~n),存在,并且0<ρ<十∞,则当0<ν<+∞时,ρ必为f(Z)的对数级,进而ν为f(Z)的对数型.定理4:设f(Z)=sum from n=0 to∞(a_nZ~n)为无穷级整函数,则f(Z)与它的导函数f’(z)具有相同的对数级与对数型.  相似文献   

6.
本文主要证明下述结果:设F(z)是下级为μ(0<μ<十∞)的整函数,具有有穷条级≥μ的Borel方向。如果F(z)有一个有穷亏值,则F(z)是拟素的。  相似文献   

7.
本文考虑整函数f(z)的亏亚纯函数的亏量和问题,得到如下结果: 定理1.设f(z)是有穷级λ的整函数,且λ非整数,a(z)是开平面上的亚纯函数,且T(r,a(z))=o{T(r,f)}.则??δ(a(z),f)≤1-k(λ),其中k(λ)的意义如下:  相似文献   

8.
1.金路、戴崇基:《关于亏函数的F.Nevanlinna猜想》(Ⅰ)与(Ⅱ)。 1930年F.Nevanlinna提出他著名的猜想:设f(z)是有穷正级λ的亚纯函数。若其所有亏值的亏量和是满足(?)δ(α,f)=2,则(ⅰ)λ是1/2的整数倍,(ⅱ)亏值个数v(f)≤2λ,(ⅲ)每个亏值的亏量δ(α,f)是1/λ的正整数倍。 1946年Pfluger证明当f(z)是整函数时,上述猜想是正确的。1982年华东师大李庆  相似文献   

9.
定理设f(z)是下级μ有穷的亚纯函数,P_4是f~(i)(z)的非零有穷亏值数,而f~(0)(z)=f(z);当i为负整数时,f~(i)(z)为f(z)的(i)次原函数(若存在的话).若对某一正整数k, ??和?? 则f~((i))(z)(i=0,±1,±2,…)的所有有穷非零亏值都分别为它们的渐近值.  相似文献   

10.
本文证明了以下结果:定理1 设f(z)是整函数,级λ< ∞,并且具有k个判别的级<1/4的渐近整函数,a_i(z)(i=1,2,...,k),L_i是相应的渐过路径对,D_i是相邻的L_i和L_(i 1)(L_(k 1)=L_1)界囿的单连通区域,再假设k=2λ,则在D_i(i=1,2,...,k)内存在一条连续伸展到∞的曲线F_i(i=1,2,...,k),使得(?)loglog|f(z)|/log|z|=λ;定理2 在定理1的假设条件之下,f(z)不具有级<λ的亏整函数.  相似文献   

11.
通过利用Nevanlinna值分布理论,考虑了当A(z)、B(z)是有穷级整函数的情况下,线性微分方程f″+A(z)f'+B(z)f=0无穷级解的角域测度。首先得到了一个一般性结果,接下来又结合了整函数的亏值和Borel方向进行讨论,使所得结果得到进一步完善。  相似文献   

12.
证明了:若f(z)为有穷级整函数且具有一个有穷亏值a。使得δ(a,f)=1,p(z)是非常数的多项式。则F(z)=f(p(z))是拟素的.  相似文献   

13.
改进了仪洪勋、林伟川等人关于整函数唯一性的定理,得到了关于具有Borel例外值并且级为有穷非整数的非常数亚纯函数的唯一性的结论.设f(z)、g(z)为非常数亚纯函数,g(z)的级λ(g)为有穷非整数,0和∞是f(z)与g(z)的CM分担值,f(z)为正规增长函数,且∞为f(z)的Borel例外值,若存在两个非零有穷判别的复数a1、a2,满足 - E1)(aj,f)(∩)-E1)(aj,g)(j=1,2)且max{(1)(0,f),δ(a1,f),δ(a2,f)}>0,或者满足-Ekj)(aj,f)(∩) -Ej)(aj,g)(j=1,2),其中k1≥1,k2≥2,则f(z)≡g(z).  相似文献   

14.
定理设f(z)是下级μ有穷的亚纯函数,P_i是f~((i))(z)的非零有穷亏值数,而f~((0))(z)=f(z);当i为负整数时,f~((i))(z)为f(z)的(i)次原函数(若存在的话)。若对某一正整数k, sum from n=a to δ(a,f~((k)))=2,和 sum from i=-∞ to ∞ P_i=μ。则f~((i))(z)(i=0,±1,±2,…)的所有有穷非零亏值都分别为它们的渐近值。  相似文献   

15.
若 f(z)为有穷正级的亚纯函数,则 f(z)的每一条 Borel 方向或者是 f~(n)(z)(n=1,2,…)的Borel 方向,或者是(1/(f(z)))~(n)(n=1,2,…)的 Borel 方向;用此结果简化了张广厚一个结果的证明:有穷正级亚纯函数若以一个有穷值为 Borel 例外值,则函数的每条 Borel 方向也是有各级导数的 Borel 方向;同时还得到:若 f(z)为有穷正极的亚纯函数,且(?)(log+m(r,f))/(logr)=ρ-ε_0,ε_0>0则 f(z)的每一条 Borel 方向必是 f~(n)(z)的 Borel 方向(n=1,2…)。  相似文献   

16.
设 f(z)是一下级μ有穷的亚纯函数。如对一正整数k则这里是的非零有穷亏值数,f~((0))=f 当 j 为负整数时,f~((f))是 f 的|j|次原函数(若存在)。  相似文献   

17.
1.金路、戴崇基:《关于亏函数的F.Nevanlinna猜想》(Ⅰ)与(Ⅱ). 1930年F.Nevanlinna提出他著名的猜想:设f(z)是有穷正级λ的亚纯函数.若其所有亏值的亏量和是满足sum from a δ(a,f)=2,则(i)λ是1/2的整数倍,(ii)亏值个数v(f)≤2λ,(iii)每个亏值的亏量δ(a,f)是1/λ的正整数倍.  相似文献   

18.
设f(z)是ρ(0<ρ< ∞)级整函数。对某一固定的θ,若 lim_(r→∞)9log~ log~ |f(rei~θ)|)/logr=ρ则称 L_θ:argz=θ为f(z)的一条ρ级射线。ρ级射线充满的角域称为,f(z)的ρ级射线角城。我们得到如下的结果:1.f(z)至少存在一个ρ级射线角域,而每个角域的开度不小于π/ρ, 2.对每一θ,0≤θ<2π,有 lim_(r→∞)(log~ log~ |f(rei~θ)|)/logr= lim_(r→∞)(log~ log~ |f′(rei~θ)|)/logr。 3.f(z)的所有Borel方向必位于ρ级射线角域之内或边界上。设ρ为f(z)的ρ级射线角域的个数,q为它的Borel方向的个数。 4.若p<2ρ,则q≥p 1。 5.若p 1<2p,且q=p 1,则,f(z)的每二相邻的Borel方向间的夹角,除一个外,都等于π/ρ。  相似文献   

19.
通过利用Nevanlinna值分布理论,考虑了当A(z)、B(z)是有穷级整函数的情况下,线性微分方程f″+A(z)f′+B(z)f=0无穷级解的角域测度。首先得到了一个一般性结果,接下来又结合了整函数的亏值和Borel方向进行讨论,使所得结果得到进一步完善。  相似文献   

20.
本文得到了下述关于亚纯函数的几个正规定则. 定理1:设{f(z)}为域D内亚纯函数族,其中每个f(z)的极点之级≥3.ρ(z)为D内全纯函数不恒等于零,若在D内,f(z)≠0,f(z)≠ρ(z).则在D内{f(z)}为正规. 定理2:设{f(z)}为域D内的亚纯函数族,其中每个f(z)的极点的级≥3.ρ(z)为D内仅有简单零点的全纯函数.若在D内f≠0,f~(k)(z)≠ρ(z),k≥0,则{f(z)}在D内为正规.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号