首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
Chiou PY  Ohta AT  Wu MC 《Nature》2005,436(7049):370-372
The ability to manipulate biological cells and micrometre-scale particles plays an important role in many biological and colloidal science applications. However, conventional manipulation techniques--including optical tweezers, electrokinetic forces (electrophoresis, dielectrophoresis, travelling-wave dielectrophoresis), magnetic tweezers, acoustic traps and hydrodynamic flows--cannot achieve high resolution and high throughput at the same time. Optical tweezers offer high resolution for trapping single particles, but have a limited manipulation area owing to tight focusing requirements; on the other hand, electrokinetic forces and other mechanisms provide high throughput, but lack the flexibility or the spatial resolution necessary for controlling individual cells. Here we present an optical image-driven dielectrophoresis technique that permits high-resolution patterning of electric fields on a photoconductive surface for manipulating single particles. It requires 100,000 times less optical intensity than optical tweezers. Using an incoherent light source (a light-emitting diode or a halogen lamp) and a digital micromirror spatial light modulator, we have demonstrated parallel manipulation of 15,000 particle traps on a 1.3 x 1.0 mm2 area. With direct optical imaging control, multiple manipulation functions are combined to achieve complex, multi-step manipulation protocols.  相似文献   

2.
Togan E  Chu Y  Imamoglu A  Lukin MD 《Nature》2011,478(7370):497-501
Control over quantum dynamics of open systems is one of the central challenges in quantum science and engineering. Coherent optical techniques, such as coherent population trapping involving dark resonances, are widely used to control quantum states of isolated atoms and ions. In conjunction with spontaneous emission, they allow for laser cooling of atomic motion, preparation and manipulation of atomic states, and rapid quantum optical measurements that are essential for applications in metrology. Here we show that these techniques can be applied to monitor and control individual atom-like impurities, and their local environment, in the solid state. Using all-optical manipulation of the electronic spin of an individual nitrogen-vacancy colour centre in diamond, we demonstrate optical cooling, real-time measurement and conditional preparation of its nuclear spin environment by post-selection. These methods offer potential applications ranging from all-optical nanomagnetometry to quantum feedback control of solid-state qubits, and may lead to new approaches for quantum information storage and processing.  相似文献   

3.
Compliance of bacterial flagella measured with optical tweezers   总被引:19,自引:0,他引:19  
S M Block  D F Blair  H C Berg 《Nature》1989,338(6215):514-518
The development of the gradient force optical particle trap ('optical tweezers') has made it possible to manipulate biological materials using a single beam of laser light. Optical traps can produce forces in the microdyne range on intact cells without causing overt damage: such forces are sufficient to arrest actively swimming bacteria and can overcome torque generated by the flagellar motor of a bacterium tethered to a glass surface by a flagellar filament. By calibrating the trapping force against Stokes' drag and measuring the twist that is sustained by this force, we determined the torsional compliance of flagella in tethered Escherichia coli and a motile Streptococcus. Flagella behaved as linear torsion springs for roughly half a revolution, but became much more rigid when turned beyond this point in either direction.  相似文献   

4.
Tunable nanowire nonlinear optical probe   总被引:2,自引:0,他引:2  
One crucial challenge for subwavelength optics has been the development of a tunable source of coherent laser radiation for use in the physical, information and biological sciences that is stable at room temperature and physiological conditions. Current advanced near-field imaging techniques using fibre-optic scattering probes have already achieved spatial resolution down to the 20-nm range. Recently reported far-field approaches for optical microscopy, including stimulated emission depletion, structured illumination, and photoactivated localization microscopy, have enabled impressive, theoretically unlimited spatial resolution of fluorescent biomolecular complexes. Previous work with laser tweezers has suggested that optical traps could be used to create novel spatial probes and sensors. Inorganic nanowires have diameters substantially below the wavelength of visible light and have electronic and optical properties that make them ideal for subwavelength laser and imaging technology. Here we report the development of an electrode-free, continuously tunable coherent visible light source compatible with physiological environments, from individual potassium niobate (KNbO3) nanowires. These wires exhibit efficient second harmonic generation, and act as frequency converters, allowing the local synthesis of a wide range of colours via sum and difference frequency generation. We use this tunable nanometric light source to implement a novel form of subwavelength microscopy, in which an infrared laser is used to optically trap and scan a nanowire over a sample, suggesting a wide range of potential applications in physics, chemistry, materials science and biology.  相似文献   

5.
提出用液晶空间光调制器制作闪耀光栅产生光学势阱的新方案,优化设计光栅的相位变化参数,用单束激光照明,产生3×3和4×4等光强光学势阱阵列.根据现有空间光调制器性能和尺寸,模拟设计光栅,计算光阱阵列光强分布.研究结果表明:所产生的光阱阵列中各光阱具有较高的峰值光强和光强梯度,且光强分布均匀;对冷原子或冷分子囚禁有较高的光学偶极势和较强的偶极力,在原子光学晶格的实验研究中具有很好的应用前景.  相似文献   

6.
活性层吸光能力和载流子传输能力之间的折衷是制约太阳能电池效率提升和成本降低的重要因素之一.特别是随着太阳能电池的薄膜化发展趋势,活性层吸光能力不足所导致的光学损失显得越来越重要.而光学管理技术能够有目的地调控入射光谱,在太阳能电池中获得可控的光场传输和能量分布,在实现光吸收增强的同时还保持了活性层优秀的电学传输性能,正是克服这一折衷的有效工具.本文从光线光学、传统波动光学和纳米光子学的视角详细阐述了典型陷光结构的光约束和增强机制,展望了光学管理技术的发展趋势.  相似文献   

7.
Bacteria living within eukaryotic cells can be essential for the survival or reproduction of the host but in other cases are among the most successful pathogens. Environmental Chlamydiae, including strain UWE25, thrive as obligate intracellular symbionts within protozoa; are recently discovered relatives of major bacterial pathogens of humans; and also infect human cells. Genome analysis of UWE25 predicted that this symbiont is unable to synthesize the universal electron carrier nicotinamide adenine dinucleotide (NAD+). Compensation of limited biosynthetic capacity in intracellular bacteria is usually achieved by import of primary metabolites. Here, we report the identification of a candidate transporter protein from UWE25 that is highly specific for import of NAD+ when synthesized heterologously in Escherichia coli. The discovery of this candidate NAD+/ADP exchanger demonstrates that intact NAD+ molecules can be transported through cytoplasmic membranes. This protein acts together with a newly discovered nucleotide transporter and an ATP/ADP translocase, and allows UWE25 to exploit its host cell by means of a sophisticated metabolic parasitism.  相似文献   

8.
Rapid transport of foreign particles microinjected into crab axons   总被引:2,自引:0,他引:2  
R J Adams  D Bray 《Nature》1983,303(5919):718-720
The rapid transport of optically detectable organelles in axons has been well documented, although its molecular mechanism remains unknown. Here we report that synthetic particles microinjected into the giant axons of the shore crab, Carcinus maenas, are also transported, moving as though they were endogenous organelles. Polystyrene beads, polyacrolein beads, paraffin droplets and glass fragments, of sizes up to 0.5 micron in diameter, have been tested. Many of these foreign particles move rapidly and for long distances along the axon in the anterograde direction, travelling in a saltatory fashion, within a well defined velocity range. In many respects the movements are indistinguishable from those of anterogradely moving endogenous organelles seen by phase-contrast in these axons. Our results indicate that there is a transport system in axons capable of carrying almost any particle of suitable physical properties in an anterograde direction.  相似文献   

9.
Laser cooling and trapping techniques allow us to control and manipulate neutral atoms. Here we rearrange, with submicrometre precision, the positions and ordering of laser-trapped atoms within strings by manipulating individual atoms with optical tweezers. Strings of equidistant atoms created in this way could serve as a scalable memory for quantum information.  相似文献   

10.
在几何光学近似下,利用光线追踪法分析了激光微束对微粒的作用力,数值计算中考虑了激光微束的具体结构对光阱力的影响.分析表明:相对折射率和激光束腰对光阱力有重要影响,激光波长和微粒大小对光阱力也有一定影响.  相似文献   

11.
Lens-based optical microscopy failed to discern fluorescent features closer than 200?nm for decades, but the recent breaking of the diffraction resolution barrier by sequentially switching the fluorescence capability of adjacent features on and off is making nanoscale imaging routine. Reported fluorescence nanoscopy variants switch these features either with intense beams at defined positions or randomly, molecule by molecule. Here we demonstrate an optical nanoscopy that records raw data images from living cells and tissues with low levels of light. This advance has been facilitated by the generation of reversibly switchable enhanced green fluorescent protein (rsEGFP), a fluorescent protein that can be reversibly photoswitched more than a thousand times. Distributions of functional rsEGFP-fusion proteins in living bacteria and mammalian cells are imaged at <40-nanometre resolution. Dendritic spines in living brain slices are super-resolved with about a million times lower light intensities than before. The reversible switching also enables all-optical writing of features with subdiffraction size and spacings, which can be used for data storage.  相似文献   

12.
当一束光照射在物质上,光子与物质发生动量交换,部分动量转移到物质,等效于对物质产生作用力,称为光学力.这一作用力非常弱,一般在pN甚至更小的量级,但一定条件下,仍足以捕获和操纵纳米、微米尺度的物体.在金属纳米结构中,由于表面等离激元共振效应,诱导的局域电场可以产生增强的光学力,可以在亚波长尺度实现光操纵,并且由此衍生出一个极具吸引力的研究方向——表面等离激元光学力.本文介绍了利用金属纳米结构进行表面等离激元光学力操纵的最新研究进展.  相似文献   

13.
Pinkse PW  Fischer T  Maunz P  Rempe G 《Nature》2000,404(6776):365-368
The creation of a photon-atom bound state was first envisaged for the case of an atom in a long-lived excited state inside a high-quality microwave cavity. In practice, however, light forces in the microwave domain are insufficient to support an atom against gravity. Although optical photons can provide forces of the required magnitude, atomic decay rates and cavity losses are larger too, and so the atom-cavity system must be continually excited by an external laser. Such an approach also permits continuous observation of the atom's position, by monitoring the light transmitted through the cavity. The dual role of photons in this system distinguishes it from other single-atom experiments such as those using magneto-optical traps, ion traps or a far-off-resonance optical trap. Here we report high-finesse optical cavity experiments in which the change in transmission induced by a single slow atom approaching the cavity triggers an external feedback switch which traps the atom in a light field containing about one photon on average. The oscillatory motion of the trapped atom induces oscillations in the transmitted light intensity; we attribute periodic structure in intensity-correlation-function data to 'long-distance' flights of the atom between different anti-nodes of the standing-wave in the cavity. The system should facilitate investigations of the dynamics of single quantum objects and may find future applications in quantum information processing.  相似文献   

14.
在几何光学近似下,利用光线追踪法分析了激光微束作用于微粒的作用力,数值计算中考虑了激光微束的具体结构对光阱力的影响。分析表明:相对折射率和激光束腰对光阱力有重要影响,另外激光波长和微粒大小对光阱力也有一定影响。  相似文献   

15.
Peccianti M  Conti C  Assanto G  De Luca A  Umeton C 《Nature》2004,432(7018):733-737
In certain materials, the spontaneous spreading of a laser beam (owing to diffraction) can be compensated for by the interplay of optical intensity and material nonlinearity. The resulting non-diffracting beams are called 'spatial solitons' (refs 1-3), and they have been observed in various bulk media. In nematic liquid crystals, solitons can be produced at milliwatt power levels and have been investigated for both practical applications and as a means of exploring fundamental aspects of light interactions with soft matter. Spatial solitons effectively operate as waveguides, and so can be considered as a means of channelling optical information along the self-sustaining filament. But actual steering of these solitons within the medium has proved more problematic, being limited to tilts of just a fraction of a degree. Here we report the results of an experimental and theoretical investigation of voltage-controlled 'walk-off' and steering of self-localized light in nematic liquid crystals. We find not only that the propagation direction of individual spatial solitons can be tuned by several degrees, but also that an array of direction-tunable solitons can be generated by modulation instability. Such control capabilities might find application in reconfigurable optical interconnects, optical tweezers and optical surgical techniques.  相似文献   

16.
The ability to cool and slow atoms with light for subsequent trapping allows investigations of the properties and interactions of the trapped atoms in unprecedented detail. By contrast, the complex structure of molecules prohibits this type of manipulation, but magnetic trapping of calcium hydride molecules thermalized in ultra-cold buffer gas and optical trapping of caesium dimers generated from ultra-cold caesium atoms have been reported. However, these methods depend on the target molecules being paramagnetic or able to form through the association of atoms amenable to laser cooling, respectively, thus restricting the range of species that can be studied. Here we describe the slowing of an adiabatically cooled beam of deuterated ammonia molecules by time-varying inhomogeneous electric fields and subsequent loading into an electrostatic trap. We are able to trap state-selected ammonia molecules with a density of 10(6) cm(-3) in a volume of 0.25 cm3 at temperatures below 0.35 K. We observe pronounced density oscillations caused by the rapid switching of the electric fields during loading of the trap. Our findings illustrate that polar molecules can be efficiently cooled and trapped, thus providing an opportunity to study collisions and collective quantum effects in a wide range of ultra-cold molecular systems.  相似文献   

17.
Bloch I 《Nature》2008,453(7198):1016-1022
At nanokelvin temperatures, ultracold quantum gases can be stored in optical lattices, which are arrays of microscopic trapping potentials formed by laser light. Such large arrays of atoms provide opportunities for investigating quantum coherence and generating large-scale entanglement, ultimately leading to quantum information processing in these artificial crystal structures. These arrays can also function as versatile model systems for the study of strongly interacting many-body systems on a lattice.  相似文献   

18.
提出了构建一种用于细胞非接触操作的激光微束系统。该系统由 Nd:YAG激光束经声压、热膨胀、汽化等综合效应实现的光刀和 He- Ne激光束经光学动力学效应实现的光镊组成。将两激光束耦合到显微镜中 ,实现了生物细胞的捕获、移动、翻转、打孔等一系列操作。在此基础上 ,分析了形成光镊所必需产生梯度力场的条件和形成光刀对能量的要求 ,进行了系统的总体设计、关键部件设计和选择 ,构建了一套激光微束操作实验系统 ,得到了预期的试验结果。在该系统上成功地实现了非接触细胞操作 ,并对染色体进行了切割。  相似文献   

19.
We have demonstrated preparing and rotating single neutral rubidium atoms in an optical ring lattice generated by a spatial light modulator, inserting two atoms into a single microscopic optical potential efficiently by dynamically reshaping the optical dipole trap, trapping single atoms in a blue detuned optical bottle beam trap, and confining single atoms into the Lamb-Dicke regime by combining red and blue detuned optical potentials. In combination with the manipulation of internal states of single atoms, the study is opening a way for research in the field of quantum information processing and quantum simulation. In this paper we review the past works and discuss the prospects.  相似文献   

20.
S M Block 《Nature》1992,360(6403):493-495
Microscopic objects, including biological material, can be remotely manipulated with tightly focused beams of infrared laser light. The use of optical traps, or 'optical tweezers', holds great promise for noninvasive micromanipulation and mechanical measurement in cell biology. Optical tweezers are the 'tractor beams' of today's technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号