首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Alu elements are found exclusively in primate species and comprise over 10% of the human genome. To better define the mechanisms responsible for Alu replication, we introduced a human Alu element into mouse cells. We report that Alu retrotransposition can be induced in mouse cells by exposure to the topoisomerase II inhibitor etoposide and is mediated in trans by endogenous mouse long interspersed elements (LINEs).  相似文献   

4.
5.
6.
Mammalian genomes contain two main classes of retrotransposons, the well-characterized long and short interspersed nuclear elements, which account for approximately 30% of the genome, and the long terminal repeat (LTR) retrotransposons, which resemble the proviral integrated form of retroviruses, except for the absence of an envelope gene in some cases. Genetic studies confirmed mobility of the latter class of elements in mice, with a high proportion of phenotypic mutations consequent to transposition of the intracisternal A particle (IAP) family of LTR retrotransposons. Using the mouse genome sequence and an efficient ex vivo retrotransposition assay, we identified functional, master IAP copies that encode all the enzymatic and structural proteins necessary for their autonomous transposition in heterologous cells. By introducing mutations, we found that the three genes gag, prt and pol are all required for retrotransposition and identified the IAP gene products by electron microscopy in the form of intracellular A-type particles in the transfected cells. These prototypic elements, devoid of an envelope gene, are the first LTR retrotransposons autonomous for transposition to be identified in mammals. Their high rates of retrotransposition indicate that they are potent insertional mutagens that could serve as safe (noninfectious) genetic tools in a large panel of cells.  相似文献   

7.
8.
Substantial efforts are focused on identifying single-nucleotide polymorphisms (SNPs) throughout the human genome, particularly in coding regions (cSNPs), for both linkage disequilibrium and association studies. Less attention, however, has been directed to the clarification of evolutionary processes that are responsible for the variability in nucleotide diversity among different regions of the genome. We report here the population sequence diversity of genomic segments within a 450-kb cluster of olfactory receptor (OR) genes on human chromosome 17. We found a dichotomy in the pattern of nucleotide diversity between OR pseudogenes and introns on the one hand and the closely interspersed intact genes on the other. We suggest that weak positive selection is responsible for the observed patterns of genetic variation. This is inferred from a lower ratio of polymorphism to divergence in genes compared with pseudogenes or introns, high non-synonymous substitution rates in OR genes, and a small but significant overall reduction in variability in the entire OR gene cluster compared with other genomic regions. The dichotomy among functionally different segments within a short genomic distance requires high recombination rates within this OR cluster. Our work demonstrates the impact of weak positive selection on human nucleotide diversity, and has implications for the evolution of the olfactory repertoire.  相似文献   

9.
Definition of a consensus binding site for p53.   总被引:35,自引:0,他引:35  
Recent experiments have suggested that p53 action may be mediated through its interaction with DNA. We have now identified 18 human genomic clones that bind to p53 in vitro. Precise mapping of the binding sequences within these clones revealed a consensus binding site with a striking internal symmetry, consisting of two copies of the 10 base pair motif 5'-PuPuPuC(A/T)(T/A)GPyPyPy-3' separated by 0-13 base pairs. One copy of the motif was insufficient for binding, and subtle alterations of the motif, even when present in multiple copies, resulted in loss of affinity for p53. Mutants of p53, representing each of the four "hot spots" frequently altered in human cancers, failed to bind to the consensus dimer. These results define the DNA sequence elements with which p53 interacts in vitro and which may be important for p53 action in vivo.  相似文献   

10.
Microsatellites are a ubiquitous class of simple repetitive DNA sequence. An excess of such repetitive tracts has been described in all eukaryotes analyzed and is thought to result from the mutational effects of replication slippage. Large-scale genomic and EST sequencing provides the opportunity to evaluate the abundance and relative distribution of microsatellites between transcribed and nontranscribed regions and the relationship of these features to haploid genome size. Although this has been studied in microbial and animal genomes, information in plants is limited. We assessed microsatellite frequency in plant species with a 50-fold range in genome size that is mostly attributable to the recent amplification of repetitive DNA. Among species, the overall frequency of microsatellites was inversely related to genome size and to the proportion of repetitive DNA but remained constant in the transcribed portion of the genome. This indicates that most microsatellites reside in regions pre-dating the recent genome expansion in many plants. The microsatellite frequency was higher in transcribed regions, especially in the untranslated portions, than in genomic DNA. Contrary to previous reports suggesting a preferential mechanism for the origin of microsatellites from repetitive DNA in both animals and plants, our findings show a significant association with the low-copy fraction of plant genomes.  相似文献   

11.
Tandemly repeated DNA sequences are highly dynamic components of genomes. Most repeats are in intergenic regions, but some are in coding sequences or pseudogenes. In humans, expansion of intragenic triplet repeats is associated with various diseases, including Huntington chorea and fragile X syndrome. The persistence of intragenic repeats in genomes suggests that there is a compensating benefit. Here we show that in the genome of Saccharomyces cerevisiae, most genes containing intragenic repeats encode cell-wall proteins. The repeats trigger frequent recombination events in the gene or between the gene and a pseudogene, causing expansion and contraction in the gene size. This size variation creates quantitative alterations in phenotypes (e.g., adhesion, flocculation or biofilm formation). We propose that variation in intragenic repeat number provides the functional diversity of cell surface antigens that, in fungi and other pathogens, allows rapid adaptation to the environment and elusion of the host immune system.  相似文献   

12.
Endogenous retroviruses have shaped the evolution of mammalian genomes. Host genes that control the effects of retrovirus insertions are therefore of great interest. The modifier-of-vibrator-1 locus (Mvb1) controls levels of correctly processed mRNA from genes mutated by endogenous retrovirus insertions into introns, including the Pitpn(vb) tremor mutation and the Eya1(BOR) model of human branchiootorenal syndrome. Positional complementation cloning identifies Mvb1 as the nuclear export factor Nxf1, providing an unexpected link between the mRNA export receptor and pre-mRNA processing. Population structure of the suppressive allele in wild Mus musculus castaneus suggests selective advantage. A congenic Mvb1(CAST) allele is a useful tool for modifying gene expression from existing mutations and could be used to manipulate engineered mutations containing retroviral elements.  相似文献   

13.
The mammalian Y chromosome has unique characteristics compared with the autosomes or X chromosomes. Here we report the finished sequence of the chimpanzee Y chromosome (PTRY), including 271 kb of the Y-specific pseudoautosomal region 1 and 12.7 Mb of the male-specific region of the Y chromosome. Greater sequence divergence between the human Y chromosome (HSAY) and PTRY (1.78%) than between their respective whole genomes (1.23%) confirmed the accelerated evolutionary rate of the Y chromosome. Each of the 19 PTRY protein-coding genes analyzed had at least one nonsynonymous substitution, and 11 genes had higher nonsynonymous substitution rates than synonymous ones, suggesting relaxation of selective constraint, positive selection or both. We also identified lineage-specific changes, including deletion of a 200-kb fragment from the pericentromeric region of HSAY, expansion of young Alu families in HSAY and accumulation of young L1 elements and long terminal repeat retrotransposons in PTRY. Reconstruction of the common ancestral Y chromosome reflects the dynamic changes in our genomes in the 5-6 million years since speciation.  相似文献   

14.
Detecting genetic variants that are highly divergent from a reference sequence remains a major challenge in genome sequencing. We introduce de novo assembly algorithms using colored de Bruijn graphs for detecting and genotyping simple and complex genetic variants in an individual or population. We provide an efficient software implementation, Cortex, the first de novo assembler capable of assembling multiple eukaryotic genomes simultaneously. Four applications of Cortex are presented. First, we detect and validate both simple and complex structural variations in a high-coverage human genome. Second, we identify more than 3 Mb of sequence absent from the human reference genome, in pooled low-coverage population sequence data from the 1000 Genomes Project. Third, we show how population information from ten chimpanzees enables accurate variant calls without a reference sequence. Last, we estimate classical human leukocyte antigen (HLA) genotypes at HLA-B, the most variable gene in the human genome.  相似文献   

15.
Complex SNP-related sequence variation in segmental genome duplications   总被引:23,自引:0,他引:23  
There is uncertainty about the true nature of predicted single-nucleotide polymorphisms (SNPs) in segmental duplications (duplicons) and whether these markers genuinely exist at increased density as indicated in public databases. We explored these issues by genotyping 157 predicted SNPs in duplicons and control regions in normal diploid genomes and fully homozygous complete hydatidiform moles. Our data identified many true SNPs in duplicon regions and few paralogous sequence variants. Twenty-eight percent of the polymorphic duplicon sequences we tested involved multisite variation, a new type of polymorphism representing the sum of the signals from many individual duplicon copies that vary in sequence content due to duplication, deletion or gene conversion. Multisite variations can masquerade as normal SNPs when genotyped. Given that duplicons comprise at least 5% of the genome and many are yet to be annotated in the genome draft, effective strategies to identify multisite variation must be established and deployed.  相似文献   

16.
17.
18.
The completed draft version of the human genome, comprised of multiple short contigs encompassing 85% or more of euchromatin, was announced in June of 2000 (ref. 1). The detailed findings of the sequencing consortium were reported several months later. The draft sequence has provided insight into global characteristics, such as the total number of genes and a more accurate definition of gene families. Also of importance are genome positional details such as local genome architecture, regional gene density and the location of transcribed units that are critical for disease gene identification. We carried out a series of mapping and computational experiments using a nonredundant collection of 925 expressed sequence tags (ESTs) and sections of the public draft genome sequence that were available at different timepoints between April 2000 and April 2001. We found discrepancies in both the reported coverage of the human genome and the accuracy of mapping of genomic clones, suggesting some limitations of the draft genome sequence in providing accurate positional information and detailed characterization of chromosomal subregions.  相似文献   

19.
20.
Of more than 1,000 human olfactory receptor genes, more than half seem to be pseudogenes. We investigated whether the most recent of these disruptions might still segregate with the intact form by genotyping 51 candidate genes in 189 ethnically diverse humans. The results show an unprecedented prevalence of segregating pseudogenes, identifying one of the most pronounced cases of functional population diversity in the human genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号