首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
设计了一种应用于双载波正交频分复用(DC-OFDM)无线通信系统的高速、低功耗快速傅里叶变换(FFT)处理器.为降低传统并行架构带来的硬件实现开销,提出了一种新型的结合FFT分解的多路并行架构,有效减少了实现所需的乘法器和加法器数目,在提高处理器数据吞吐率的同时,进行了芯片面积的优化.另外,采用提出的处理单元实现不同的基运算,并对基-2、基-22、基-23、基-24不同架构下的定点FFT运算所需的硬件开销进行定量分析,以选择最优的基结构.最后,介绍了旋转因子乘法器的设计.设计实现的128点FFT处理器采用SMIC 0.13μm CMOS工艺,芯片面积为1.44 mm2,最大数据吞吐率达到1GS/s,在典型工作频率500MS/s下的功耗为39.5mW.与现有其他128点FFT处理器相比,减小了面积,节约了功耗.  相似文献   

2.
FFT处理器的高密度可编逻辑器件实现   总被引:1,自引:0,他引:1  
为了提高快速离散傅立叶变换(FFT)的处理速度,研究了一种宜于高密度可编逻辑器件(CLPD)实现FFT处理器的硬件结构,并利用CPLDFLEX10K设计和实现了128点FFT单片处理器,系统的仿真表明,该处理器运算结果正确,在系统时钟频率为20MHz时,128点复数FFT处理器的计算时间小于230us。研究表明:CPLD与FFT的结合将提高FFT的处理速度,从而使FFT的应用更加广泛。  相似文献   

3.
实时可重配置FFT处理器的ASIC设计   总被引:2,自引:1,他引:1  
设计一种能够完成4,16,64,256或1 024点复数快速傅里叶变换(FFT)处理器芯片.16,64点运算采用基-4级联流水线结构,256,1 024点采用二维运算结构,数据采用块浮点表示.使用Synopsys公司的综合及布局布线工具在SMIC CMOS 0.18 μm工艺上进行ASIC实现.该处理器芯片在100 MHz时钟频率连续工作时,处理一组1 024点FFT序列需要24.8 μs,每隔10.24 μs输出一组1 024点运算结果.该处理器芯片已应用于某宽带数字接收机中.  相似文献   

4.
为了在TD-SCDMA移动终端实现高效联合检测,设计了一个用于2×2 MIMO系统的64/128点FFT处理器.设计的FFT处理器基于R2SDF的流水线结构,采用乘法器共享的电路结构,适合处理2路MIMO系统,在满足系统数据吞吐率的同时,节省了信号处理的硬件开销.设计采用Xilinx公司的Virtex4进行综合验证,同时采用SMIC13工艺综合,在50 MHz的时钟下,功耗估计为8.3 mW,实现了低开销的电路设计.  相似文献   

5.
研究了一种基于分级存储并行运算的改进快速傅里叶变换(FFT)处理器算法,通过减少对RAM存储器的读写次数降低功耗,采用并行运算方法减少数据处理时间.基于该算法以及改进的基-4蝶形单元设计了一款4096点FFT处理器.该处理器采用SMIC 0.18μm CMOS工艺设计实现,芯片核面积为9mm2,在slow工艺角条件下,版图后仿真最高时钟频率为192.3MHz,功耗为422mW@100MHz,最小处理时间为67.92μs.  相似文献   

6.
基于多核架构提出了一种适用于长期演进技术(LTE)下行链路128~2048/1536点快速傅里叶变换(FFT)计算的算法,并进行了仿真.利用多核结构将FFT算法进行并行划分,采用流水线并行和数据并行的结构,减少运行时间.同时将该算法基于一块使用TSMC 65nm工艺制成的多核芯片上实现,在750MHz的工作频率下,计算128~2048/1536点FFT的芯片实测功耗为282~366mW,能量效率为每点35.4~84.33nJ.与其他设计相比,运行速度最多能提高近6倍,计算大点数FFT时,能量效率可提高约20%.  相似文献   

7.
针对一种新型的OFDM系统算法,设计了一款具有高吞吐率可配置的FFT处理器IP核.在现有算法的基础上,提出了一种优化的设计架构,并对各个功能模块特别是存储单元、复数乘法器和控制逻辑进行了优化设计.通过基于Verilog HDL的参数化模块设计和模块复用技术,最大限度地提高数据吞吐率,实现了FFT处理器点数的可配置功能.Vertex-Ⅱ Pro FPGA验证结果表明,对于256点定点16位符号数复数FFT运算,该FFT处理器最高工作频率为106 MHz,系统数据吞吐率达到了51.3 MS/s,延时仅为255个时钟周期.  相似文献   

8.
在SoC Encounter 5.2的平台上,对应用于UWB无线通信的128点FFT处理器进行了物理设计.在前端综合以及可测性设计后导出的FFT处理器门级网表的基础上,采用SMIC 0.18μmCMOS工艺,进行了布图规划、电源规划、布局、时钟树综合、静态时序分析与优化、布线等步骤.在完成详细布线之后,对该设计进行物理...  相似文献   

9.
提出了一种适用于OFDM系统的快速全流水FFT处理器结构.考虑时域抽取(DIT)和频域抽取(DIF)算法的有限字长效应,采用DIF算法.首先对FFT碟形变换的复乘法进行简化,然后提出相应的流水线碟形处理单元(BPE),最后采用0.13μm1.08 V CMOS工艺实现了64点基2 DIF FFT处理器.综合结果显示,该处理器能够工作在200 MHz,面积和功耗分别为2.9 mm2和15 mW.提出的全流水FFT处理器能够广泛应用于WALN、DVB-T、ADSL以及其它基于OFDM的多载波系统.  相似文献   

10.
快速傅里叶变换(FFT)处理器是大多数数字信号处理和数字通信系统的关键部件.文章实现了一种4 k(4 096)点改进的R-64(基-64)FFT处理器,相对于其他 R-4的流水线结构,具有占用资源更少、控制更简单等特点.该FFT处理器采用浮点数制流水线结构,能够连续处理输入数据,对R-4处理单元的改进减少了62.5%的复数加法器;该FFT处理器基于FPGA的系统时钟能够达到89 MHz,数据吞吐量为4 096 point/46 μs.  相似文献   

11.
FPGA实现流水线结构的FFT处理器   总被引:11,自引:0,他引:11  
针对高速实时信号处理的要求,介绍了用现场可编程逻辑阵列(FPGA)实现的一种流水线结构的FFT处理器方案.该FFT处理器能够对信号进行实时频谱分析,最高工作频率达到75 MHz.通过对采样数据进行加窗处理来减少了频谱泄漏产生的误差.为了提高FFT工作频率和节省FPGA资源,采用了由1 024点复数FFT计算2048点实数FFT的算法.此外还介绍了一种计算复数模值的近似算法.  相似文献   

12.
提出了一种基于SDF(single-path delay feedback)结构的低功耗FFT处理器。该FFT处理器使用了根据输入数据的统计分布特征的功耗优化方案。详细分析了该方法的优缺点,并提出了相应的改进方案。使用中芯国际0.18 μm工艺设计实现了一个64点的FFT处理器,通过比较发现对于特定的数据流,大约可以节省15%的功耗。  相似文献   

13.
一种针对嵌入式处理器的动态调度控制器设计   总被引:1,自引:0,他引:1  
针对嵌入式处理器数据相关问题,设计了一种动态调度控制器.与传统的停流水线控制器相比,只增加一个单指令缓冲器及一些判断逻辑,能有效降低数据相关造成的影响.在FFT及FIR实验中,流水线冲突分别减少75%和62.5%,处理器面积仅增加8.2%.  相似文献   

14.
 为了满足当前高速网络传输处理中安全性与实时性的要求,以AES-128/192/256算法为基础,设计了一种采用流水可重构技术的AES加/解密IP核,并通过SOPC技术将该IP核、Nios II处理器、网络控制器等功能模块与外围设备进行集成,实现了一个可根据具体应用资源多少与安全系数要求而灵活配置的片上网络适配器.本设计采用硬件描述语言VHDL设计,利用Quartus Ⅱ8.0进行了综合与布线,最后在DE2实验平台上进行下载测试验证.整个设计硬件结构简单、安全性高、运行速度快、灵活性强,可被广泛应用于网络信息安全领域.  相似文献   

15.
用Astro工具设计FFT处理器版图流程.在设计FFT处理器版图过程中,采用新的电源网络设计方法进行电源/地Pad数量、电源环和电源条设计,采用布线前设定高层跳线方式和布线后插入保护二极管方式消除天线效应,通过整个版图设计过程防止串扰效应实现串扰不超过设定的阈值,并对布局阻塞违规和布线违规提出解决办法.实现了满足时序和制造工艺要求的FFT处理器版图,达到项目设定的各项性能指标要求.  相似文献   

16.
提出了基于CPLD(复杂可编程逻辑器件)实现傅立叶变换点数可灵活扩展的高速FFT处理器的结构设计以及各功能模块的算法实现,包括高组合数FFT算法的流水线实现结构、读/写RAM地址规律、补码实现短点数FFT阵列处理结构以及补码实现CORDIC(坐标旋转数字计算机)算法的流水线结构等,输入数据速率为20 MHz时,1024点FFT运算时间约为50 us.  相似文献   

17.
为了满足开放式数控系统的需求,设计了一种基于TMS320F28335浮点型数字信号处理器(DSP)和EP2C8F256C6现场可编程门阵列(FPGA)的通用三轴运动控制器.详细介绍该运动控制器的整体结构、硬件电路设计、插补算法、FPGA各分模块的构成及实现,并给出了相关设计的软件结构框图.该控制器具有结构简单、通用性强、模块化高等特点,能够很好地满足运动控制系统的实时性和精确性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号