首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
生物技术中的基因工程,近年来发展极为迅速,但过去多数报道偏重于微生物基因工程,《生物技术和植物基因工程》则对植物基因工程着重介绍,很有参考价值。  相似文献   

2.
《科学之友》2005,(4):59-59
历史性的事件发生在1973年。当时,两名科学家从一只非洲爪蟾的DNA上提取一个基因,并将它移植到一个细菌当中。他们的实验创造了第一个在自己的DNA中有其他生物DNA的生活细胞。基因工程的一个普遍应用是将人类基因置入大肠杆菌。这些经过基因工程改造的微生物随后会产生某种物质  相似文献   

3.
<正>1.什么是转基因食品?不是通过基因的自然重组,而是通过人工技术改变生物遗传物质(DNA),通常被称为"现代生物技术"或"基因技术",也称为"DNA重组技术"或"基因工程"。基因工程可从某个有机体选择单个基因传输到另一个有机体中,甚至可以在没有亲  相似文献   

4.
《科学通报》2021,66(20):2573-2589
塑料由于具有易于加工、运输和储存以及化学性质稳定等特点,在生产生活中应用非常广泛,但同时也增加了其进入自然环境并在环境中长期停留的可能性.环境中的塑料在生物和非生物因素作用下可发生物理和化学性质的变化.其中,生物降解既是塑料不可避免的环境行为之一,也是环境友好型塑料废弃物的处理方法.因此,探究塑料的生物降解更加具有现实和生态意义.本文首先详细总结了动物、植物、微生物和酶对塑料的生物降解过程,然后进一步归纳并揭示了塑料的生物降解机理.动物和植物对塑料的生物降解均与微生物和酶相关.微生物首先定殖在塑料表面形成生物膜,然后分泌胞外酶或胞内酶将塑料分解为分子量较低的低聚物、二聚体或单体,它们可以被微生物作为碳源而吸收,最终矿化生成CO_2、CH_4、H_2O等.此外,本文深入分析了影响塑料生物降解效率的关键因素,包括塑料种类、玻璃化转化温度、表面亲疏水性等自身性质,动物、微生物和酶的不同种类和性质,以及温度、氧气含量、太阳辐射等环境因素.同时,还讨论了塑料生物降解产物的环境行为,塑料经生物降解后产生的小尺寸碎片和低聚物以及释放的增塑剂等具有不同程度的生态毒性.最后,本文对塑料生物降解的未来研究方向进行了建议和展望,为探明塑料的环境归趋提供了理论支持.  相似文献   

5.
生物有机化学中的分形问题   总被引:1,自引:1,他引:0  
《生物有机化学中的分形问题》一文则是介绍分形理论在生物有机化学中的应用。《基因工程活载体疫苗研究进展》一文,则将目前分子生物学的前沿——基因工程在某一个领域内取得的成就作了介绍。  相似文献   

6.
科技传真     
用基因工程培育“吃” 重金属的植物 自然界中几乎所有植物在生长过程中都要吸收一定量的金属元素,但一些个别植物对某些金属元素、包括有毒金属元素具有特别大的“胃口”。这些植物只能在其他植物无法生存的特定金属含量高的地带健康成长,但这些植物比较稀有,且生长速度缓慢。 英国牛津大学病毒学和环境微生物学研究所的科学家发现,植  相似文献   

7.
郑彤  周启星  欧阳少虎 《科学通报》2023,(24):3155-3171
植物不仅为细菌等土壤微生物提供了丰富的生态位,还通过光合作用等固碳途径和合成代谢过程最终转化为土壤有机质,成为微生物可利用的碳源.相反,土壤微生物可以作为去除污染物的生物催化剂,也能帮助植物吸收氮、磷等营养物质.因此,植物-微生物共生系统具有降污固碳双重作用.本文围绕植物-微生物共生系统降解污染物和固定二氧化碳的两大生态功能,系统梳理了共生系统三个要素之间的相互作用关系.从植物、微生物和二者共生关系三个角度归纳了共生系统的污染修复途径,总结了植物和微生物的固碳机制.同时也分析了土壤中重金属和有机污染物对植物固碳过程造成的不利影响.本文最后对未来植物和土壤微生物在降污和固碳方面的研究进行了展望,旨在促进土壤污染的研究与治理,改善土壤生态系统的固碳功能.  相似文献   

8.
毒理芯片技术及应用   总被引:8,自引:0,他引:8  
毒理芯片(toxchip)技术是在基因组技术和DNA微阵列技术基础上发展起来的分子生物学技术, 它将使科学家在分子水平评价外界有毒物质的毒性状况. 1999年美国国家环境健康科学研究所(NIEHS)成功开发出了毒理芯片技术[1], 该技术对传统毒理学研究具有革命性意义, 它预示了快速高效地确定环境危险物及环境有毒物质DNA效应的时代已经来临, 将为医学、 环境毒理学及生态毒理学等研究开辟新途径. (ⅰ) 毒理芯片的工作原理. 美国科学家最先将毒理芯片技术用于研究毒理学[1]. 既然克隆的cDNA微阵列可以测定基因表达, 反过来基因表达就可以作为被…  相似文献   

9.
pBR322质粒DNA的原子力显微镜成象及剪切研究   总被引:1,自引:0,他引:1  
田芳  李建伟  王琛  白春礼 《科学通报》1997,42(9):986-990
研究DNA分子间和分子内相互作用力,可以帮助人们了解DNA分子的结构及其功能.由于对这些相互作用力进行直接测量时,不仅需要控制体系的稳定性,同时外加作用力又不能对体系产生影响.因此,目前只是利用X射线,光散射和核磁共振等手段对作用力进行直接的物理或热力学测量.虽然渗透压技术已经应用到DNA双螺旋非特定分子间力的测量,但对于具有特定取向的复杂分子相互作用,就需要在单个分子间进行直接测量.原子力显微镜(AFM)可以检测到10~(-14)N数量级的针尖-样品相互作用力,横向分辨率可达0.01nm,而接触面积只有10nm~2,并且可以在近生理溶液条件下操作,因此它是非常适合研究DNA分子间相互作用力的.事实上,利用AFM研究Biotin-streptavidin体系中的单个分子间相互作用以及DNA双链间的相互作用力已有报道.  相似文献   

10.
孟安明 《科学通报》1993,38(22):2092-2092
DNA 指纹图技术自1985年问世以来,已成为法医学上个体识别和亲缘鉴定的有力工具,而且还广泛地用于研究动植物甚至微生物的群体遗传和进化、以及重要性状的遗传连锁分析.常规的 DNA 指纹分析需要采用特定的 DNA 指纹探针,它们主要为多位点小卫星探针(multilocus minisatellite probes)和微卫星探针(microsatellite probes).目前应用最广的DNA 指纹探针包括人源小卫星探针33.6,33.15,α-珠蛋白-3′HVR;细菌噬菌体 M13;微卫星(TG)_n、(GTG)_n 等.然而,并非任何单位都能获得这些探针,而且制备探针 DNA 既  相似文献   

11.
郭晓强 《自然杂志》2015,37(5):369-390
20世纪下半叶,分子生物学取得迅猛发展,分子生物学酶的发现和应用在其中发挥了巨大的推动作用。DNA聚合酶、RNA聚合酶、逆转录酶、限制性内切酶和端粒酶等的鉴定和功能阐明拓展了对许多生命现象的理解和认识。这些酶的应用还衍生出重组DNA、桑格酶法测序和聚合酶链式反应等技术,在基因操作、DNA测序和扩增等方面具有广泛应用。通过介绍分子生物学酶的研究历程展现了酶的发现和应用对当代生命科学研究仍有重要意义。  相似文献   

12.
Vasil  IK 袁卫明 《世界科学》1991,13(5):40-42,52
与生物医学技术相似,植物生物技术也由两个关键而互相联系的技术部分组成,即细胞培养技术和分子生物学技术.对植物分子生物学的关注与研究是近几年才开始的,目前对植物生长和发育分子基础的研究已经取得了一定的成果;而细胞培养技术早在本世  相似文献   

13.
CRISPR/Cas是存在于细菌及古细菌中成簇的、规律间隔的短回文重复序列及其核酸酶系统,是细菌和古细菌中破坏噬菌体与外源DNA的免疫防护机制.科学家将该免疫防护机制改造成了简便高效的基因组编辑工具,并在微生物、动物及植物的基因功能解析及改良方面取得了巨大的进展.本文先对基于CRISPR/Cas开发的植物基因组编辑工具,如CRISPR/Cas9、CRISPR/Cas介导的同源重组、胞嘧啶碱基编辑器、腺嘌呤碱基编辑器、双碱基编辑器和引导编辑器等进行介绍,接着详细阐述了在作物分子育种中越来越重要的DNA-free CRISPR/Cas植物基因组编辑技术,然后探讨了CRISPR/Cas基因组编辑技术在提高作物产量和品质、提高作物对生物及非生物逆境抗性、从头驯化及定向改良等方面的应用,分析了CRISPR/Cas植物基因组编辑技术的发展趋势、促进该技术应用的国家政策导向及社会环境,以便更好地促进CRISPR/Cas基因组编辑技术在农作物品种改良中的应用,助推我国种业振兴和藏粮于技战略的实现.  相似文献   

14.
秦克诚 《科学》2002,54(1):47-48
遗传工程是人类20世纪重要的技术成就之一,本文以邮票为媒介追溯人类在此领域的进展. 遗传工程有广义和狭义之分.广义的遗传工程包括细胞水平上的遗传操作(细胞工程)和分子水平上的遗传操作(基因工程),狭义的遗传工程就是基因工程(又称重组DNA技术).  相似文献   

15.
一类叫做农杆菌的微生物,能把DNA插入植物细胞,科学家现在力图利用这种天然系统的优点来改良作物。科学家们选取的一种基因,已首次置放在农杆菌DNA的载体上并转移到植物细胞中,而且这种新基因在植物内的存在已为实验所证实。跨出了这一有希望的步子以后,科学家们看到,有可能利用遗传工程赋予  相似文献   

16.
近代生物科学的研究表明,各种生物的生息繁衍,都是因为生物细胞里有遗传物质DNA,这种双螺旋结构的DNA,上面携带着无尽的遗传基因。正是这些遗传基因,承担了生物传宗接代的使命。近些年,生物工程、农作物基因工程、植物转基因技术取得了很大的成就,一批抗虫、抗病、耐除草剂和高产优质的农作物新品种相继培育成功。尤其是在植物的育种方面,为了保证植物的一些优良遗传性状,育种和遗传专家采用了一种新的育种方法———转基因育种。所谓转基因植物育种,就是人类应用生物基因工程,根据人们的需要,把一种生物基因剪切、缝合到另…  相似文献   

17.
随着以基因工程为前导的世界性新技术革命高潮的兴起,人们的注意力正在开始向一个更加热门的领域转移,这就是植物基因工程的开发与前景问题。八十年代在动物、微生物基因工程中取得的重大突破,预示着植物育种家千百年来梦寐以求的能够真正准确地按照设计蓝图构建新生物类型的美好企求已经问鼎有望,植物细胞具有全能性,为遗传转化的植物细胞  相似文献   

18.
《科学通报》2007,52(16):1978-1979
生物节律是一种植物内在的、复杂而精细的生理调节系统,它使植物得以根据外界环境的周期性变化来协调自身的新陈代谢以及各种生理过程,从而与外界环境保持同步.生物节律在植物的生命过程中扮演着非常重要的角色,参与植物发育过程许多方面的调控.随着拟南芥基因组的测序完成,近年来模式植物拟南芥中的许多生物节律系统组分得到了鉴定和详细的功能研究,如CCA1,LHY,TOC1,LUX和EPR1等;这些蛋白参与调控拟南芥的生物节律,形成一个复杂的拟南芥生物节律的调控网络.  相似文献   

19.
段毅  吴保祥 《科学通报》2008,53(22):2776-2781
为了认识不同地区和不同植物中单体正构烷烃的氢同位素组成及其对环境的响应, 应用GC-TC-IRMS氢同位素分析新技术, 对中国纬度从20°~39°N范围的6个地区草、芦苇和树叶三类植物单体正构烷烃的氢同位素进行了分析和研究. 结果表明, 对于同一植物来说, 单体正构烷烃之间的d D差值分布在42.1‰~66.6‰, 表明同一植物的d D差值显著; 偶碳数正构烷烃的氢同位素大都略重于奇碳数正构烷烃; 大多数植物中正构烷烃氢同位素分布具有随碳数增加变重的趋势. 在不同类型植物中, 平均d D值分布在-202.6%~-130.7‰之间, 盐沼样品中最大; 不同地区同类植物的单体正构烷烃平均d D值具有树叶>芦苇>草的特征; 同一地区不同植物种类之间正构烷烃的d 13D值也是树叶>芦 苇>草, 反映了不同植物种类之间正构烷烃氢同位素组成差别显著. 草、树叶中正构烷烃平均d D值和C27, C29正构烷烃d D值与纬度和温度具有很好的相关性, 这些d D值都随样品所在地区的纬度增加而变小, 随气温的增加而变大, 说明它们可以指示环境. 这些结果为植物中单体正构烷烃氢同位素分布规律的认识及其应用研究提供了重要的基础资料.  相似文献   

20.
蓝色基因将应用于未来的牛仔服装的制造中。目前使用的棉织物染料对环境有不良影响。这种染料含有有害成分,废料污染环境,且用它上色又费工费时,棉花种植者和基因工程学家正在研究革新棉纺织业的染色途径。他们已培育出了色彩鲜艳的棉花。 基因工程学家最关注的是蓝色基因。美国加利福尼亚州有两家公司正试图通过基因工程培育蓝色棉花,并将它用于制造蓝色牛仔服。基因工程学家计划首先从靛蓝植物  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号