共查询到18条相似文献,搜索用时 62 毫秒
1.
传统K-means聚类算法通过欧式距离计算样本的相似度,将数据所有的属性特征均平等对待,忽略每个属性特征的不同贡献,导致样本相似度计算的准确率不高.针对这个不足,提出一种特征加权的K-means算法进行优化.首先,运用Softmax和Sigmoid逻辑回归函数计算特征权重,使得加权的欧式距离更能准确地表示样本相似度;其... 相似文献
2.
一种改进的K-means聚类算法 总被引:1,自引:0,他引:1
于丽 《辽宁师专学报(自然科学版)》2010,12(2):1-1,18
传统的K-means聚类算法对初始聚类中心的依赖程度很大,聚类结果会随聚类中心的选择不同波动很大,为了消除这种中心选择不确定性,提出一种改进的K-means聚类算法,从而有效地改善初始聚类中心点选择的随机性,提高聚类结果的稳定性.仿真实验结果表明,改进后的K-means聚类算法优于传统的算法. 相似文献
3.
李小展 《东莞理工学院学报》2011,18(1):29-32
针对原始K-means算法的一系列问题,提出一种基于半监督的K-means聚类改进算法,能够自动进行聚类,找出最优K值,并且最大限度地找出孤立点.首先根据样本集自身的特点,按照"类内尽可能相似"原则一步一步形成数据集,然后对数据集进行"去噪"与合并相似簇,最后,利用少量的标记信息指导和修正聚类结果.在UCI的多个数据集... 相似文献
4.
K-means算法是聚类方法中常用的一种划分方法.基于扩展划分的思想,提出了一种基于扩展的K-means聚类算法(EK-means),在一定程度上避免了聚类结果陷入局部解的现象,减少了原始K-means算法因采用误差平方和准则函数而出现将大的聚类簇分割开的情况.该算法使用了基于距离的技术来处理孤立点,引进了一种基于扩展的方法进行聚类.实验表明该算法可扩展性好,能够很好的识别出孤立点或噪声,并且有很好的精度. 相似文献
5.
针对指纹定位精度易受指纹数据K-means聚类预处理效果不佳、加权K近邻算法采用固定K值进行匹配定位精度差等问题,提出一种基于改进K-means聚类的自适应加权K近邻算法.算法在对指纹数据进行聚类计算过程中充分考虑参考点间接收信号强度值与实际物理坐标的双重影响,以避免参考点分类不明确;根据每个测试点的匹配参考点之间实际距离的均值和标准差设置阈值,动态选择K值.实验结果证明,改进K-means聚类的自适应加权K近邻算法相较于传统室内定位算法定位精度提高了44%,可为相关应用提供更精确的定位服务. 相似文献
6.
K-means聚类算法是近年来数据挖掘学科的一个研究热点和重点,该算法是基于划分的聚类分析算法.目前这种算法在聚类分析中得到了广泛应用。本文将介绍K-means聚类算法的主要思想,及其优缺点。针对该算法经常陷入局部最优,以及对孤立点敏感等缺点,提出了一种基于模拟退火算法的方法对其进行优化,可以有效地防止该算法陷入局部最优的情况。 相似文献
7.
基于信息熵改进的 K-means 动态聚类算法 总被引:1,自引:2,他引:1
杨玉梅 《重庆邮电大学学报(自然科学版)》2016,28(2):254-259
初始聚类中心及聚类过程产生的冗余信息是影响K-means算法聚类性能的主要因素,也是阻碍该算法性能提升的主要问题.因此,提出一个改进的K-means算法.改进算法通过采用信息熵对聚类对象进行赋权来修正聚类对象间的距离函数,并利用初始聚类的赋权函数选出质量较高的初始聚类中心点;然后,为算法的终止条件设定标准阈值来减少算法迭代次数,从而减少学习时间;最后,通过删除由信息动态变化而产生的冗余信息来减少动态聚类过程中的干扰,以使算法达到更准确更高效的聚类效果.实验结果表明,当数据样本数量较多时,相比于传统的K-means算法和其他改进的K-means算法,提出的算法在准确率和执行效率上都有较大提升. 相似文献
8.
图像分割是图像处理中的重要环节,如何提高图像分割的准确度一直以来都是图像领域的研究重点及难点.K-means聚类算法作为经典聚类算法得到广泛应用,但是,k值的选取往往难以确定.针对这一问题,提出了一种改进的K-means算法.首先将输入的彩色图像转化为灰度图像,统计灰度直方图的峰值数,将其设定为聚类数k,然后对原图像的... 相似文献
9.
黄美璇 《佛山科学技术学院学报(自然科学版)》2010,28(2)
K-means算法需要人工设定聚类个数且易受孤立点影响,根据这个缺陷提出了一种新的改进算法。改进算法通过设定初始值及初始值的最大值,在聚类过程中自动获取聚类数k。实验结果表明,该算法在一定程度上缓解了K-means算法对初始值敏感及受孤立点影响的问题,能产生高质量的聚类结果。 相似文献
10.
基于2d-距离改进的K-means聚类算法研究 总被引:1,自引:0,他引:1
为了解决原始K-means算法随机选取聚类中心对聚类结果产生较大影响的不足和孤立点的存在对聚类精度的破坏,以及两者之间的相互牵制性,采用基于2d-距离的DKC值来对原始样本数据集进行预处理以分辨孤立点,同时确定初始的聚类中心,达到消除两者相互影响的效果,使得聚类中心相对稳定,改进后的算法较原始的算法在准确度上得到了改进。 相似文献
11.
提出的基于距离浓度的K-均值聚类算法把聚类的数据对象视为抗原,聚类中心看作是免疫系统中的抗体,聚类过程表示为免疫系统不断产生抗体,识别抗原,最后产生出可以捕获抗原的最佳抗体过程.定义了抗体浓度和亲和度,使得抗体之间的距离越大,其距离浓度越小,反之则浓度越大,从而提高了算法的搜索效率.设计了抗体的期望繁殖率计算方法和克隆变异方法.仿真结果表明:该算法不仅克服了传统的K-均值聚类算法易陷入局部极小值的缺点,而且避免了对初始化选值敏感性的问题,同时也有较快的收敛速度. 相似文献
12.
一种改进的全局K-均值聚类算法 总被引:3,自引:0,他引:3
将快速K中心点聚类算法确定初始中心点的思想应用于全局K-均值聚类算法,对其选取下一个簇的最佳初始中心的方法进行改进,提出选取下一个簇的最佳初始中心的一种新方法.该新方法选择一个周围样本分布相对密集,且距离现有簇的中心比较远的样本为下一个簇的最佳初始中心,得到一种改进的全局K-均值聚类算法.改进后的算法不仅可以避免将噪音点作为下一个簇的最佳初始中心点,而且在不影响聚类效果的基础上缩短了聚类时间.通过UCI机器学习数据库数据以及随机生成的人工模拟数据实验测试,证明改进的全局K-均值聚类算法与全局K-均值聚类算法及快速全局K-均值聚类算法相比在聚类时间上更优越. 相似文献
13.
基于改进GA的K-均值聚类算法 总被引:3,自引:0,他引:3
利用遗传算法或免疫规划算法解决初始聚类中心是较好的方法,但容易出现局部早熟现象.为了克服以上缺点,借助免疫机制的优点,将免疫原理的选择操作机制引入遗传算法中,提出基于改进遗传的K-均值聚类算法,该方法结合K-均值算法的高效性和改进遗传算法的全局优化能力,较好地解决了聚类中心优化问题.试验结果表明,本算法能够有效改善聚类质量. 相似文献
14.
研究了K均值算法中初始聚类中心的选择对算法本身聚类精度及效率的影响,并提出了改进的算法(LK算法,Leader+K-means).LK算法中的初始聚类中心选择不是随机的,而是利用Leader算法得到若干个初始类中心,然后选择包含数据项最多的k个类中心,作为K均值算法的初始类中心.实验结果表明,LK算法在聚类结果的稳定性和正确率方面都是有效可行的. 相似文献
15.
原始的k-means算法是从样本点的集合中随机选取K个中心,这种选取具有盲目性和随意性,它在很大程度上决定了算法的有效性.为消除选取初始中心的盲目性,应充分利用已有数据样本点的信息.采取对数据进行预处理的方式来选取初始中心.实验证明新的初始点的选取不仅提高了算法的计算效率,也提高了算法最终确定的聚类的精度. 相似文献
16.
聚类分析是一种重要的数据挖掘方法,K-means算法是其中最常用的基于划分的方法。本文提出了一种基于初始均值点离散化的改进K-means算法。改进的算法在选取初始均值点时,尽量使初始均值点的分布离散化,解决了传统算法中随机选取初始均值点所造成的一些问题。同时,为了得到更高质量的聚类结果,本文进行了数据集中的离群点检测和自动确定参数k的最佳取值两方面的前期处理工作。实验证明,改进后的算法明显优于传统算法。 相似文献
17.
基于加权Hamming距离的虹膜匹配算法 总被引:1,自引:0,他引:1
为了提高虹膜识别系统的识别性能,提出了基于加权Hamming距离的虹膜匹配算法。在利用多尺度Gabor滤波器组提取虹膜纹理相位特征的虹膜识别系统中,不同尺度、不同方向的Gabor滤波器,甚至同一Gabor滤波器的实部和虚部对虹膜纹理的描述能力不同,其抽取的特征的鉴别能力也不一样。根据鉴别能力的差异,在计算Hamming距离时对不同滤波器的输出进行加权,利用加权后的距离进行身份认证。实验结果表明,与传统的基于归一化Hamming距离的虹膜匹配算法相比,改用该算法后,虹膜识别系统的等错误率从0.97%下降到0.47%,识别性能得到明显改善。 相似文献
18.
基于改进k-均值聚类的纸币冠字号图像分割算法 总被引:1,自引:0,他引:1
针对传统彩色图像分割方法的局限性,提出了基于HSI色彩空间和改进K-均值聚类的图像分割方法,通过将彩色图像分解成三个相互独立的H、S、I分量,利用各个分量特点及其直方图确定聚类类别和初始聚类中心,在高饱和度区和低饱和度区分别聚类,并将聚类结果合并取交集,从而分割出目标区域.将该方法用于纸币冠字号码图像分割,经仿真验证,结果不受噪声和局部边缘变化的影响,分割效果得到明显提升,为后续冠字号准确识别提供了良好的基础. 相似文献