首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
为进一步提高短期电力负荷的预测精度,需要更深层次发掘负荷数据中隐藏的非线性关系。提出一种基于信号分解技术的二次模态分解的长短期记忆神经网络(long short-term memory network, LSTM)用于电力负荷的短期预测。所提算法先对原始负荷序列进行自适应噪声的完全集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN),再将CEEMDAN分解后分量中的强非平稳分量进行变分模态分解(variational mode decomposition, VMD),同时用中心频率法对VMD分解个数进行优化,然后将两次分解后得到的负荷子序列送入LSTM中进行预测,并将所得分量预测结果进行叠加。结果表明,本文所提方法对短期电力负荷预测结果精度和模型性能都有较大提升。  相似文献   

2.
鉴于目前使用变分模态分解(VMD)搭建的单次或二次分解风功率组合预测模型中,大多均直接忽略了风功率经VMD分解后残差项所包含的丰富信息,使得超短期风功率预测精度受限。本文提出了一种基于二次分解NGO-VMD残差项、K均值聚类算法与LSTM的组合预测模型。首先,使用北方苍鹰优化算法(northern goshawk optimization,NGO)对VMD的参数进行寻优,以选出最佳VMD参数组合;其次,采用NGO-VMD模型对VMD残差项进行二次分解,深度挖掘VMD残差项所包含的丰富信息;再次,利用K均值聚类算法解决VMD分解模态分量个数多,计算量繁冗的问题;最后,创建LSTM模型对各子模态分量分别进行预测并叠加各子模态分量的预测值得到超短期风功率预测结果。结果表明:该二次分解NGO-VMD残差项、K均值聚类算法和LSTM组合预测模型可充分挖掘VMD残差项的重要信息,有效提高了超短期风功率预测的精度。  相似文献   

3.
为了提高风电功率预测准确性,提出一种基于频率游程判别法和变分模态分解(VMD)残差修正的风电功率超短期预测模型.采用变分模态分解将原始风电功率序列分解,得到一系列不同中心频率的子序列,再利用序列之差提取残差序列,残差序列继承原始序列噪声分量与分解被屏蔽的真实分量,呈现波动性大,非线性复杂和不平稳的特点,采用t-SSAL...  相似文献   

4.
为进一步提高短期电力负荷预测精度,构建一种基于注意力机制的经验模态分解(EMD)和门控循环单元(GRU)混合模型,对时间序列的短期负荷进行预测.首先,对负荷序列进行EMD,将数据重构成多个分量;再通过GRU提取各分量中时序数据的潜藏特征;经注意力机制突出关键特征后,分别对各分量进行预测;最后,将各分量的预测结果叠加,得到最终预测值.仿真结果表明:相对于BP网络模型、支持向量机(SVR)模型、GRU网络模型和EMD-GRU模型,基于EMD-GRU-Attention的混合预测模型能取得更高的预测精度,有效地提高短期电力负荷预测精度.  相似文献   

5.
为提高短期电力负荷预测精度,提出了基于变分模态分解(VMD:Variational Mode Decomposition)的CNN-BiLSTM-Att(Convolutional Neural Network-Bidirectional Long Short-Term Memory-Attention)的短期负荷预测模型。该模型将历史的负荷数据使用VMD分解成多个子序列负荷并结合天气、日期、工作日类型等因素作为输入特征,得到各个子序列负荷的预测值,然后相加重构组成实际负荷预测曲线。通过与其他模型实验对比,VMD-CNN-BiLSTM-Att模型在测试集上相比于其他模型均有所降低,在连续的周负荷预测中,日负荷预测的平均绝对百分比误差基本维持在1%~2%之间。在复杂负荷变化的非工作日中,平均绝对百分比误差相比CNN-LSTM降低0.13%。证明VMD-CNN-BiLSTM-Att短期负荷预测模型能提高电力负荷预测的精度。  相似文献   

6.
为进一步提高风电功率预测精度,提出一种基于麻雀搜索算法(SSA)优化VMD参数的组合预测方法。首先,使用麻雀搜索算法对VMD参数进行优化,并利用优化后的VMD对数据进行分解;其次,结合灰色关联分析法和熵权法对环境变量进行相关性分析,选择相关性最高的影响因素与分解得到的各模态分量组合作为LSTM预测模型的输入,获得更为精确的预测结果;最后,建立基于非参数核密度估计(NKDE)的风电功率概率预测模型,实现对风电功率预测结果不确定性的有效量化。结果表明,所提组合模型的MAE,RMSE和MAPE比VMD-LSTM模型的分别下降了39.51%,33.22%和40.39%。SSA-VMD-LSTM-NKDE组合模型不仅能够有效提高确定性预测的精度,而且还能够实现对风电功率预测结果不确定性的有效量化,为风电功率预测提供了科学决策依据。  相似文献   

7.
肖威  方娜  邓心 《科学技术与工程》2024,24(16):6734-6741
为了挖掘电力负荷数据中的潜藏信息,提高负荷预测的精度,针对电力负荷强非线性、非平稳性等特点,提出一种基于变分模态分解(variational mode decomposition,VMD)、优化长短期神经网络(long-term and short-term memory network,LSTM)、改进的粒子群算法(improve particle swarm optimization,IPSO)优化门控循环单元(gated recurrent unit neural network,GRU)的混合预测模型。首先,使用相关性分析确定确定输入因素,再将负荷数据运用VMD算法结合样本熵分解为一系列本征模态分量(intrinsic mode fuction,IMF)和残差量,更加合理地确定分解层数和惩罚因子;其次,根据过零率将这些量划分为低频和高频,低频分量使用LSTM网络,高频分量利用IPSO-GRU网络分别进行预测;最后,将预测结果重构得到电力负荷的最终结果。仿真结果表明,相对于其它常规模型,该混合模型可有效的提取模态特征,具有更高的预测精度。  相似文献   

8.
庞稀廉  龙科军 《科学技术与工程》2022,22(35):15792-15801
为提升城市道路短时交通流预测准确性,提出了一种基于小波分解(wavelet decomposition,WD)、变分模态分解(variational mode decomposition,VMD)和融合注意力机制(attention ,AT)的门控循环单元(gated recurrent units,GRU)网络的短时交通流预测模型。首先采用WD算法将原始交通流数据分解重构成低频分量和高频分量;然后将各高频分量累加,利用VMD算法将其分解为多个本征模态函数(intrinsic mode functions,IMF)分量;最后通过建立GRU-AT模型,提高模型对交通流重要特征信息提取的能力,分别预测算法分解后的交通流分量,将各个分量预测的最优结果进行聚合后获得最终的交通流预测结果。以国内外道路交通流数据为基础进行实例验证,结果表明,WD+VMD+GRU-AT模型的均方误差的平方根、平均绝对误差均小于长短时记忆(long short-term memory,LSTM)网络模型、 GRU、WD+GRU、WD+VMD+GRU,提高了短时交通流预测结果的准确度和稳定性。  相似文献   

9.
基于冷负荷时间序列固有的复杂性和不规则性,针对预测过程中容易出现梯度消失、模态混叠和过拟合等问题,提出一种集成变分模态分解(variational mode decomposition,VMD)和门控循环单元网络(gated recurrent unit,GRU)的VMD-GRU模型。对原始数据进行相关性分析,挑选出相关性高的进行预测;使用VMD将原始数据序列分解为独立固有模式函数;使用GRU对每个分量进行预测;将分量预测结果相加得出冷负荷预测值。为验证模型的有效性,以西安某大型公共建筑为例进行能耗分析,并与BP、 GRU、EMD-BP、VMD-BP、EMD-GRU等其他预测模型进行对比。实验结果表明,提出的VMD-GRU模型可有效解决梯度消失、模态混叠和过拟合等问题,预测精度显著提高,预测效果优于其它预测模型,符合大型公共建筑冷负荷的变化规律,为节能优化提供有力数据支撑。  相似文献   

10.
为了能够准确地预测空气质量指数(AQI),建立了基于集合经验模态分解(EEMD)-样本熵(SE)的极限学习机(ELM)和门控循环单元(GRU)组合的AQI预测模型。首先利用EEMD算法对AQI数据进行分解,得到一组不同尺度的本征模态函数分量和残余分量;其次计算各分量SE值,根据各分量SE值将各分量重新组合成新的序列,并将新序列按其复杂程度经过GRU模型或ELM模型进行预测;最后将所有结果叠加得到AQI预测值。实验结果表明,与反向传播(Back Propagation,BP)神经网络模型、长短期记忆网络(Long Short-term Memory,LSTM)模型、ELM模型、GRU模型、EEMD-SE-ELM模型、EEMD-SE-GRU模型和EMD(经验模态分解)-SE-ELM-GRU模型相比,基于EEMD-SE-ELM-GRU的组合预测模型其预测误差最小,预测精度最高。  相似文献   

11.
负荷数据的高度随机性和不确定性,导致短期负荷预测的精度很难提升.为了提高短期负荷预测的准确度,提出了一种基于完全自适应噪声集合经验模态分解(CEEMDAN)与卷积神经网络(CNN)和门控循环单元(GRU)组合模型的短期负荷预测方法.首先,利用CEEMDAN模型将复杂的原始负荷序列分解为几个相对简单的子序列;其次,利用卷...  相似文献   

12.
国家电网物资采购管理水平不断提高,线上采购流程逐步完善,但仍存在由于采购计划预估不准导致招投标过程中,供应商利用招投标总标包机制进行价格博弈而造成电网公司采购成本增加,因此,建立准确有效的电力物资需求预测模型具有重要意义。针对电力物资序列的非稳定性、波动性和间歇性特点,提出一种基于参数优化变分模态分解(variational mode decomposition, VMD)与长短时记忆神经网络(long short-term memory, LSTM)的电力物资需求预测方法,选取国网电商专区平台的典型电力物资,采用鲸鱼优化算法(whale optimization algorithm, WOA)参数优化的VMD对原始序列进行模态分解,将分解获得的各模态分量分别构建LSTM模型,最后将各模态的预测值叠加重构为电力物资的预测值。实验结果表明:所提电力物资需求预测方法较LSTM、EMD-LSTM、VMD-LSTM、PSO-VMD-LSTM、SSA-VMD-LSTM有更高的准确率,对电网物资采购预测具有一定实际意义。  相似文献   

13.
台区负荷数据不仅作为时序数据呈现自相关性,还易受台区环境因素影响呈现非平稳性,因此预测精度不仅与预测模型结构有关,还与输入数据的时序特征有关。为了提高台区负荷的预测精度,提出一种基于混沌时序分析与核极限学习机的短期负荷多粒度预测模型。针对负荷数据的非平稳特征,通过变分模态分解算法将非平稳的原始信号转换成一系列相对平稳的子信号;针对负荷数据中的自相关特征,通过混沌时序分析方法,求解各个模态输入预测模型时的时间窗大小;构建多粒度核极限学习机预测模型,解决负荷数据中非平稳、自相关性对负荷预测的不利影响,提高模型的预测精度。结果表明,负荷的预测精度受输入数据时间窗大小的影响,不同模态分量的最佳时间窗的大小不同。采用混沌相时序分析的方法评估各个模态分量的最佳时间窗大小,可以有效提升核极限学习机的预测精度。  相似文献   

14.
杨健  孙涛  陈小龙  苏坚  姚健  周倩 《科学技术与工程》2023,23(27):11646-11654
电力系统在国家工业基础设施中起着举足轻重的作用,维持系统负荷高精度预测是保障电力系统高效供应的关键。针对负荷数据的非平稳性、随机性与非线性,负荷预测误差较大的问题,结合变分模态分解(variational mode decomposition, VMD)、经验小波变换(empirical wavelet transform, EWT)、改进的空洞卷积金字塔模块(improved atros spatial pyramid pooling, IASSP)、集成双向长短时记忆模块(ensemble BiLSTM,EBiLSTM),提出了一种短期电力负荷预测模型。为解决负荷数据的非平稳性引起的模型预测波动问题,通过变分模态分解方法与经验小波变换的结合分解为若干子序列,显著降低了原始负荷序列的复杂性;为提高模型预测精度,将分解的负荷子序列利用过零率指标划分高低频序列,在低频序列中构建一种时序依赖捕获模块EBiLSTM提取长期负荷特征,高频序列中构建特征提取模块IASSP提取局部负荷特征,最后累加各子序列的预测结果,实现电力系统负荷的短期预测。选取行业通用客观评价指标:平均绝对误差、均方根误差,...  相似文献   

15.
为了获得更高的短期负荷预测精度,有必要充分考虑负荷变化趋势与区域整体用电行为模式之间的关联,提出一种特征空间闭操作驱动的短期电力负荷预测方法。在综合模型的基础上,首先利用特征提取模型将历史用电负荷分解成多个分量作为刻画区域用电行为的特征;然后使用特征选择模型对用电行为特征进行选择,减少冗余或无效特征的干扰,优化预测模型;最后将选择的特征子集作为预测模型的输入特征从而进一步估计出各时段负荷的分布。结果表明采用本方法预测精度更高。  相似文献   

16.
突如其来的新型冠状病毒肺炎(COVID-19)疫情给电力负荷造成了严重的影响,为了有效应对疫情带来的影响,提高疫情影响下的短期负荷预测精度,提出了一种基于恐惧指数(FI)的疫情影响下短期电力负荷预测方法.利用疫情数据构建FI,与时间信息、历史负荷、气象条件一起作为广义回归神经网络(GRNN)模型的输入变量,用果蝇优化算法(FOA)对GRNN平滑因子进行优化,提高预测结果的准确度和稳定性,使用构建的预测模型进行预测.算例结果表明,该方法能有效提高疫情影响下短期负荷预测的精度,为重大灾难影响下的短期负荷预测提供参考与借鉴.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号