共查询到16条相似文献,搜索用时 46 毫秒
1.
设Tn(尺)是一个含单位元的可交换环尺上的上三角矩阵代数,引进了广义Jordan导子的概念,并证明了上三角矩阵代数上任意一个广义Jordan导子△可分解成一个广义导子φ和反导子δ之和,即△=φ+δ。 相似文献
2.
研究了完全矩阵代数上的广义Jordan导子,证明了完全矩阵代数上的每一个广义Jordan导子是导子与广义内导子之和。 相似文献
3.
用元素比较法研究了三角矩阵代数上的广义 Jordan 导子,证明了三角矩阵代数上的广义Jordan 导子都是一个广义导子. 相似文献
4.
引入并讨论了广义高阶Jordan导子、广义高阶Jordan三重导子及广义高阶导子的定义,研究了三角代数上的广义高阶Jordan导子和广义高阶Jordan三重导子;利用三角代数的结构性质和代数分解,证明了三角代数上的每个广义高阶Jordan导子和广义高阶Jordan三重导子是广义高阶导子;证明了在三角代数上的广义高阶Jordan导子、广义高阶Jordan三重导子和广义高阶导子是等价的. 相似文献
5.
《陕西理工学院学报(自然科学版)》2015,(4)
运用算子论的方法研究三角代数上的广义Jordan左导子,证明了三角代数上的广义Jordan左导子是广义左导子,给出三角代数上广义左导子的一种表示定理及关于广义Jordan左导子的相关性质。 相似文献
6.
探讨交换半环上的上三角矩阵代数的Jordan导子,并证明了交换半环R上的上三角矩阵代数Tn(R)到Tn(R)-双模M的每个Jordan导子都可分解成一个导子和一个反导子之和. 相似文献
7.
研究了形式三角矩阵半环Tri(R,M,S)的Jordan双导子,给岀了形式三角矩阵半环Tri(R,M,S)的Jordan双导子的等价刻画,进而证明了在某些条件下形式三角矩阵半环Tri(R,M,S)的每一个Jordan双导子都是双导子. 相似文献
8.
设A是Jordan代数,如果线性映射d:A→A满足任给a,b∈A都有d(a。b)=d(a)。b+a。d(b),则称d是Jordan导子。本文给出了自伴算子构成的Jordan代数和Spin因子上的Jordan导子的具体表达形式,并且证明了Spin因子上的局部Jordan导子和2-局部Jordan导子是Jordan导子。 相似文献
9.
半环理论是代数理论上研究的热点问题。近年来,越来越多的研究人员注意到了半环理论在数学及其他研究领域的运用也非常普遍,在这些其他学科中有着广泛的应用。研究了形式三角矩阵半环Tri (A,M,B)上的广义导子的定义和表示形式。给出了半环上双半模上的拟同态映射f的定义。证明了半环Tri (A,M,B)上的任意的一个广义导子可以由半环A,B上的广义导子和(A,B)-双半模M上的一个拟同态映射来表示。 相似文献
10.
令N为Banach空间X上的套,AlgN为相应的套代数。设δ:AlgN→AlgN是可加映射。证明了如果存在可加映射τ:AlgN→AlgN,使得映射δ满足条件δ(A2)=δ(A)A+Aτ(A)对任意A∈AlgN成立,并且套N中存在一个非平凡元在X中可补,则δ是可加广义Jordan导子,进而,δ是广义导子。 相似文献
11.
探讨交换半环上矩阵半环的导子,证明了交换半环R上矩阵半环的导子均可表为一个内导子和R的一个诱导导子之和. 相似文献
12.
获得了交换半环上矩阵代数自同构的一些代数性质,证明了任意非负交换半环上n阶矩阵代数的自同构的n次幂必为内自同构. 相似文献
13.
令R是含有单位元1且2为其可逆元的可换环,M(n,R)表示R上所有n×n阶矩阵形成的代数,N(n,R)表示R上所有严格上三角矩阵所形成的M(n,R)的子代数.本文具体刻画了N(n,R)上的任一若当导子,即N(n,R)的每一个若当导子均可被唯一地分解为内导子、对角导子和中心导子之和. 相似文献
14.
设A,B是含单位元的Banach代数, M是一个Banach A,B-双模。 T=(A MB) 按照通常矩阵加法和乘法,范数定义为‖(a mb)‖=‖a‖A+‖m‖M+‖b‖B,构成三角Banach代数。通过作用(f hg)(a mb)=f(a)+h(m)+g(b), T的对偶空间 T*为(A* M*B*)。 在T*上定义模作用 (a mb)·(f hg)=(a·f+m·h b·hb·g), (f hg)·(a mb)=(f·a h·ah·m+g·b), 使其成为一个对偶Banach T-双模。从T到T*的映射称为对偶模映射。 本文对T上对偶模Jordan导子和对偶模广义导子进行讨论, 给出了T上对偶模Jordan导子是对偶模导子的一个充分条件并且对T上对偶模广义导子进行了刻画。 相似文献
15.
设τ( N )是复可分Hilbert空间H上的套代数,(φ,ψ)是套代数τ( N )上的线性映射对。若对任意A,B∈τ(N )且AB=0,有φ(AB)=φ(A)B+Aψ(B)成立,则(φ,ψ)是广义内导子对。 相似文献
16.