首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
针对滚动轴承故障信号的自适应提取和分解的问题,提出一种基于乌鸦搜索算法优化变分模态分解的滚动轴承故障诊断方法。将变分模态分解(variational mode decomposition, VMD)方法的关键参数K和α采用新型的乌鸦搜索算法(crow search algorithm, CSA)进行优化,得到最优参数组合;再将最优参数组合输入到变分模态分解算法中,对故障信号进行分解从而得到多个本征模态分量(intrinsic mode function, IMF);以样本熵值为适应度函数挑选最优分量,对最优分量进行包络解调,分析其包络谱判断出轴承的故障类型。结果表明,提出的方法在兼顾全局搜索和局部搜索的同时也能将复杂的轴承故障信号准确地进行分解,提取出最优分量进行分析从而判断出轴承故障类型。  相似文献   

2.
针对强背景噪声下非高斯脉冲噪声和高斯噪声对滚动轴承故障诊断产生严重干扰的问题,提出了一种基于改进变分模态分解(variational mode decomposition, VMD)并与循环相关熵谱(cyclic correntropy spectrum, CCES)相结合的故障诊断方法。首先,针对VMD传统重构指标易受噪声影响的问题,引入相关熵峭度(correlation entropy kurtosis index, CEK)指标对VMD分解后的模态分量进行选择与重构,去除高斯噪声;然后针对重构后信号仍存在的脉冲噪声影响问题,对重构信号进行CCES投影融合去除非高斯脉冲噪声干扰并增强特征;最后对融合结果进行分析与故障诊断。经仿真测试与实验表明,所提出的方法可以在高斯噪声和非高斯脉冲噪声背景下有效提取滚动轴承故障特征频率并实现故障诊断。  相似文献   

3.
齿轮箱故障振动信号具有非线性、非平稳的特点,在故障早期难以实现故障特征的提取和故障类型的识别。本文提出磷虾群算法(krill herd algorithm, KHA)-变分模态分解(variational mode decomposition,VMD)-多尺度排列熵(multi-scale permutation entropy,MPE)与支持向量机(support vector machine,SVM)相结合的齿轮箱故障类型识别算法。首先对采集到的齿轮箱振动信号利用KHA优化的VMD进行分解,选取有效分量进行重构,然后求取其MPE作为特征向量,最后将特征向量输入SVM进行故障类型的识别。通过实测数据的分析表明,故障类型识别准确率达到了99.14%,该方法在机车车辆、发电机组等装备的齿轮箱状态监测和故障诊断中具有一定的参考价值。  相似文献   

4.
针对风电传动系统齿轮箱的故障诊断问题,在脉冲激励响应的基础上提出了一种频率诱导变分模态分解(FIVMD)方法,并将其应用于齿轮箱故障特征提取.首先,根据振动信号傅里叶谱的极大值分布估计齿轮箱系统的自振频率;然后,将固有频率的估计值作为各模态分量中心频率的初始化位置,并通过交替乘子法将原始信号自适应分解为本征模态函数;其次,通过希尔伯特变换对各本征模态函数求包络谱,并计算其故障特征频率比;最后,挑选出故障特征频率比最大的模态分量,并根据其包络谱特征实现齿轮箱故障的有效识别.以维斯塔斯某3 MW风电机组圆柱齿轮断齿故障为例,验证了FIVMD在工程应用中的有效性和优越性.  相似文献   

5.
为解决变分模态分解在地震数据去噪中依赖人工经验,模态分解和去噪效果具有一定随机性和偶然性的问题,提出基于频域奇异值分解信噪比估计的参数优化方法。该方法在参数范围内以较高的估计信噪比为评价参数对模态分量数目与有效模态进行选取,自适应寻找去噪最有效的参数,从而避免主观选取参数的随机性,改善去噪效果。仿真模型实验表明:估计信噪比与真实信噪比的误差为正相关关系,能够有效反映地震数据中噪声程度,所估计信噪比可以作为去噪效果的评价参数。通过仿真模型和实际地震数据对方法进行验证,结果表明基于估计信噪比参数优化后的变分模态分解方法能够有效压制噪声、凸显同相轴信息。  相似文献   

6.
概率密度建模是地震随机模拟中至关重要的环节,而弹性参数高频成分的概率密度估计决定了高分辨率地震随机模拟结果的精度。针对常规方法中弹性参数高频成分提取精度不足、概率密度建模先验条件过度约束以及弹性参数的概率密度建模分层设计等问题,提出了一种基于变分模态分解(variational mode decomposition, VMD)的弹性参数核密度估计方法。该方法首先采用VMD对测井弹性参数数据进行模态分解,筛选出本征模态函数(intrinsic mode function, IMF)中的高频项叠加得到测井弹性参数的高频成分;然后使用核密度估计分层计算得到高频成分的概率密度模型,并通过该模型进行随机抽样生成随机高频成分叠加至井旁地震数据上以达到丰富地震弹性参数数据高频内容的目的。珠江口盆地34号井区的实验结果显示,VMD有效分离出了中心频率在70 Hz以上的测井弹性参数高频成分,分层设计的核密度估计方法凸显了高频成分的统计规律,叠加随机高频成分后地震弹性参数70 Hz以上的高频成分得到了明显补充。该方法为地震高分辨率随机模拟提供了新的思路。  相似文献   

7.
国家电网物资采购管理水平不断提高,线上采购流程逐步完善,但仍存在由于采购计划预估不准导致招投标过程中,供应商利用招投标总标包机制进行价格博弈而造成电网公司采购成本增加,因此,建立准确有效的电力物资需求预测模型具有重要意义。针对电力物资序列的非稳定性、波动性和间歇性特点,提出一种基于参数优化变分模态分解(variational mode decomposition, VMD)与长短时记忆神经网络(long short-term memory, LSTM)的电力物资需求预测方法,选取国网电商专区平台的典型电力物资,采用鲸鱼优化算法(whale optimization algorithm, WOA)参数优化的VMD对原始序列进行模态分解,将分解获得的各模态分量分别构建LSTM模型,最后将各模态的预测值叠加重构为电力物资的预测值。实验结果表明:所提电力物资需求预测方法较LSTM、EMD-LSTM、VMD-LSTM、PSO-VMD-LSTM、SSA-VMD-LSTM有更高的准确率,对电网物资采购预测具有一定实际意义。  相似文献   

8.
由于行星齿轮齿轮箱的振动信号具有非平稳、非线性特性,在复杂工况下,会对其早期微弱的故障信号造成干扰,不能正确地识别出故障信息。为解决以上问题,采用基于变分模态分解(variational mode decomposition, VMD)与灰狼优化支持向量机的故障诊断方法。利用中心频率近似方法,求解出了变分模态分解的参数K,对分解出的本征模态函数(intrinsic mode function, IMF)分量进行相关性分析,优选出分量进行信号重构。将重构信号进行故障特征提取,利用灰狼优化支持向量机的方法进行故障模式识别。实验结果表明:采用所提方法对行星齿轮箱的故障识别准确率达到99.375%。  相似文献   

9.
针对传统帕金森患者冻结步态识别方法自适应性不佳的问题,提出一种基于变分模态分解的冻结步态识别方法.首先采用变分模态分解代替传统时频分析方法对冻结步态信号进行充分的自适应分解.其次为提高算法识别精度和识别速度,选用CART模型作为集成分类器的基分类器并进行特征降维处理.最后针对不平衡数据集和单分类器性能有限的问题,进行了数据采样-集成分类器的设计并通过贝叶斯优化对识别算法进行超参数寻优.实验结果表明,相对于AdaBoost、Tomeklinks-AdaBoost和ROS-AdaBoost集成算法,RUSBoost集成算法可以更高效地完成冻结步态识别任务.  相似文献   

10.
为有效抑制噪声对地震数据的影响,根据地震信号的时频特性,提出了基于变分模态分解的相关能量熵阈值去噪方法。采用变分模态分解算法将地震信号分解为频率由高频到低频且具有一定带宽的模态分量,计算各模态分量与地震信号的规范化相关系数,实现对各模态分量中的有效信息和噪声的定位。将去除有效信息的各模态分量分成若干子区间,分别计算各子区间的噪声能量熵,选取能量熵最大区间的模态分量系数作为该分量的噪声方差获得该分量的阈值,再将经阈值处理后的各模态分量重构得到去噪信号。通过对合成地震模型和实际地震信号进行去噪处理,并与直接去除高频分量的变分模态分解去噪方法进行了对比,结果表明,该方法能在强噪声环境下更有效地提取地震信号中的有效成分,提高信噪比。  相似文献   

11.
为揭示滚动轴承故障振动信号的典型特征规律,结合变分模态分解(VMD)与深度置信网络(DBN)的优势,提出轴承振动信号特征的提取方法.将信号先进行基于VMD的分解,根据各模态分量频谱图确定其模态参数,得到若干个模态分量.然后,基于DBN强大的特征提取能力,采用DBN无监督特征提取方法,将得到的模态分量映射到一维,并融合各分量的DBN特征形成特征向量,将其作为粒子群优化支持向量机(PSO-SVM)的输入进行故障诊断.实验验证与对比分析证明了VMD-DBN方法的可行性与优越性.  相似文献   

12.
针对现有电力系统输电线路故障信号分析方法中,存在故障信号特征遗失等问题,提出一种基于VMD-ApEn的两相接地故障诊断新方法。首先选取故障点处容易获取的相电压信号作为故障信号,然后对各相故障信号进行VMD分解得到其IMF分量,进一步提取各相IMF分量的近似熵值并作为一个特征向量,通过分析各相特征向量的模值,最终诊断出输电线路两相接地故障所在相。选取IEEE5节点标准测试系统验证,并与EMD-ApEn算法进行比较。实验结果表明,本文提出的VMD-ApEn方法准确可靠,避免了EMD分解时产生模态混叠的现象,更能有效地诊断出输电线路两相接地故障所在相,具有较好的实用性。  相似文献   

13.
针对原VPMCD方法在参数估计过程中存在的缺陷,用BP神经网络非线性回归方法代替原方法中的最小二乘法,解决了最小二乘法中存在的病态问题,因此,提出了改进多变量预测模型(Variable predictive mode based class discriminate,简称VPMCD)的滚动轴承故障诊断方法.首先采用总体经验模态分解(Ensemble empirical mode decomposition,简称EEMD)方法对滚动轴承振动信号进行分解得到若干个单分量信号,然后提取各分量奇异值组成特征向量作为改进VPMCD的输入,最后对滚动轴承工作状态和故障类型进行识别.实验结果表明,该方法能够有效地应用于滚动轴承故障诊断.  相似文献   

14.
针对三相整流电路的故障诊断,提出了一种基于经验模式分解和宽度学习系统相结合的三相整流电路故障诊断方法.首先利用经验模式分解方法对故障信号进行分解,提取基本模式分量的能量作为特征信号;然后再利用时间复杂度、低分类高精度的宽度学习系统建立故障诊断的分类模型,有效地完成三相整流电路的故障分类.实验结果表明,经验模式分解特征提...  相似文献   

15.
提出了一种基于小波包分析的滚动轴承故障诊断方法用于实现滚动轴承早期故障的检测.该方法的诊断过程如下:对轴承原始振动信号进行频谱分析,获取振动信号能量集中的频段.根据频段的范围和振动信号的采样频率确定小波包分解的层数.采用小波包分解的方法提取滚动轴承振动信号中能量集中的频段并生成相应的重构信号,对重构后的振动信号进行Hilbert变换和二次频谱分析.通过对比轴承故障的特征频率和二次频谱中的特征谱线判断轴承是否有故障及其发生位置.运用上述方法对具有外环故障的滚动轴承进行了实验研究并成功地实现了滚动轴承外环故障的检测.实验结果表明基于小波包分析的诊断方法可以有效诊断出滚动轴承的早期故障.  相似文献   

16.
基于经验模式分解的包络解调技术及其应用   总被引:1,自引:0,他引:1  
提出了一种新的调制信号解调分析技术,来抑制传统的包络解调方法中经常出现的无意义的频率成分.首先,对复杂的振动信号进行经验模式分解,得到若干个基本模式分量,再对包含调制信号的基本模式分量进行包络分析以提取故障信息.该方法利用经验模式分解来实现故障信息的有效分离,从而提高了诊断信号的信噪比.利用该方法对某齿轮箱轴承座振动信号进行经验模式分解,进而解调出高速轴转频这一调制频率,准确地诊断出该故障是由齿轮轴不对中所引起的,通过针对性的维修后,消除了故障,从而验证了该方法的有效性.  相似文献   

17.
针对齿轮早期故障特征的微弱性和耦合性,本文提出广义变分模式分解(generalized variational mode decomposition, GVMD)-峭度-包络谱法诊断齿轮故障。首先利用GVMD的频域多尺度定频分解属性,根据齿轮故障频谱信息和信号特点设置GVMD主要参数,按需分解信号,准确获取微弱特征分量,避免VMD对微弱特征提取存在的不足和小波包变换能量泄漏引起的微弱特征混淆问题。然后结合峭度准则和齿轮故障频率信息选择故障冲击分量,融合更多故障信息重构降噪信号。最后对降噪信号进行包络解调分析,实现齿轮故障诊断。实际信号分析表明,由于GVMD能够按需获取微弱特征分量,本文所提方法能够获得更丰富的微弱故障信息准确识别齿轮早期故障位置。  相似文献   

18.
低压配电TN系统发生接地故障的配电线路阻抗较大时,采用以剩余电流幅值大小作为动作依据的剩余电流动作保护电器防护措施,不能有效解决接地故障防护问题。从分析剩余电流波形的角度出发,采用一种基于变分模态分解(variational mode decomposition, VMD)及支持向量机(support vector machine, SVM)分类的故障诊断方法。该方法在低压配电系统内测得剩余电流信号波形,对该波形进行VMD分解后得到各剩余电流信号的固有模态函数(intrinsic mode function, IMF),对其进行Hilbert变换并进行积分得到Hilbert边际谱,再求该边际谱的能量熵,将其作为特征向量输入SVM进行分析,最后准确区分正常状态和故障状态。结果表明:发生配电线路大阻抗接地故障时,该方法可以大幅提高用剩余电流动作保护电器(residual current protection device, RCD)作为故障防护的准确率。  相似文献   

19.
基于多尺度熵的滚动轴承故障诊断方法   总被引:1,自引:0,他引:1  
针对滚动轴承故障振动信号具有不同复杂性的特点,提出了一种新的基于多尺度熵(multi-scale entropy,简称MSE)和支持向量机的滚动轴承故障诊断方法.该方法首先利用MSE方法对滚动轴承不同类型振动信号进行故障特征提取,然后与样本熵方法对比说明MSE方法相对于样本熵方法的优势,最后通过适合小样本分类的支持向量机作为分类器来识别滚动轴承故障类型.对实验数据分析的结果表明,该方法能有效地实现滚动轴承故障类型的诊断.  相似文献   

20.
基于阶次跟踪和经验模式分解的齿轮故障诊断   总被引:1,自引:0,他引:1  
提出了一种研究旋转机械瞬态信号的分析方法.对齿轮箱加速时测得的原始振动信号进行角域重采样,并对角域里的信号进行经验模式分解(EMD)得到多个固有模式函数(IMF),最后对包含齿轮故障信息的IMF分量进行阶次谱分析.结果表明,阶次跟踪技术能够有效地避免传统频谱方法所无法解决的频率模糊现象,EMD方法能够提取包含故障信息的IMF分量,将两种方法相结合是对传统的频谱分析法的有力补充,具有很广阔的应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号