首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
电子受体对同步脱氮除磷的影响   总被引:3,自引:0,他引:3  
在序批式反应器(SBR)系统内,利用活性污泥法,考察厌氧、缺氧、好氧组合工艺与厌氧、缺氧工艺中,硝酸盐和亚硝酸盐的存在、不同电子受体出现的顺序对同步脱氮除磷工艺的除磷影响,并讨论了在实现缺氧聚磷条件下,厌氧缺氧好氧工艺碳源的需求量。试验结果表明:反硝化聚磷是一种稳定的代谢行为,聚磷菌可以利用硝酸盐强化除磷;对于实现缺氧聚磷,硝酸盐的作用远远优于亚硝酸盐;亚硝酸盐的存在(<16.1mg.L-1)则对聚磷无明显影响;聚磷菌利用电子受体是以其存在的顺序而依次发生的,且这种利用能力不受电子受体转换的影响;在硝酸盐替代氧为电子受体的同步脱氮除磷工艺中,碳源需求将比传统工艺减少30%以上。  相似文献   

2.
目的研究碳源种类对双泥生物膜亚硝化反硝化除磷工艺脱氮除磷的影响程度.方法以甲醇、淀粉、葡萄糖、乙酸钠、丙酸钠、污泥水解酸化液六种碳源模拟废水,通过间歇运行方式对不同碳源的反硝化除磷系统的运行状态进行研究.结果六个系统中,淀粉的COD去除率最小,为45%,其余系统相差不大,去除率最大的是污泥水解酸化液,为88%;缺氧结束时系统出水PO_4~(3-)-P质量浓度分别为2.24 mg/L、3.00 mg/L、3.81 mg/L、1.40 mg/L、2.46 mg/L、1.18 mg/L;各系统每克M LSS的亚反硝化速率分别为1.27 mg/(g·h)、1.15 mg/(g·h)、1.58 mg/(g·h)、2.91 mg/(g·h)、2.60 mg/(g·h)、2.03 mg/(g·h).结论碳源种类对双泥生物膜亚硝化反硝化除磷系统有很大影响,淀粉类大分子碳源不利于反硝化除磷,乙酸钠类小分子物质有利于磷的释放和吸收.  相似文献   

3.
在磷技强化生物除术的基础上,对反硝化聚磷菌和反硝化聚糖菌的反硝化能力对生物除磷的影响进行了总结分析。在强化生物除磷系统中,缺氧条件下存在反硝化聚磷菌和反硝化聚糖菌,会对聚磷菌富集和系统除磷产生影响,同时研究发现碳源种类、电子受体类型、进水C/N、污泥龄和pH值是反硝化除磷的影响因素。乙酸钠为理想碳源、以NO~-_3—N为理想电子受体、C/N值的理想比值为4~5、控制污泥龄最佳范围是10~12d、pH值的最佳控制范围是7~8,反硝化除磷效果好。  相似文献   

4.
亚硝酸积累条件下反硝化脱氮过程动力学模型   总被引:6,自引:0,他引:6  
采用序批式反应器,对以乙酸钠和新鲜生活垃圾沥滤液为外加碳源的反硝化系统进行了反硝化过程动力学研究,为优选碳源提供理论依据.在系统亚硝酸盐暂时积累条件下,分别采用分段零级动力学模型和基于Monod方程的动态模型,拟合试验数据,并求算相应的动力学参数.结果表明,乙酸钠碳源系统反应初始阶段,脱氮速率要比以垃圾沥滤液为碳源高出38%.分段动力学得到的表观碳氮比(速率比)表明,亚硝酸盐降解阶段是反硝化的限制步骤.基于Monod方程的微分方程组模型,能够很好地拟合两种不同碳源条件下反硝化过程硝酸盐、亚硝酸盐质量浓度的变化,参数值与实际运行效果一致,所得动力学参数能够反映碳源利用效率.  相似文献   

5.
亚硝酸盐对反硝化除磷菌抑制机理研究   总被引:2,自引:1,他引:1  
利用静态试验研究了亚硝酸盐质量浓度对反硝化吸磷的影响,并且对亚硝酸盐对反硝化吸磷抑制机理进行了深入分析.试验结果表明,缺氧初始NO2--N质量浓度在20 mg/L以下时,NO2-- N可以作为电子受体,但随着NO2--N质量浓度的增加,反硝化速率和吸磷速率都会降低;缺氧初始NO2--N质量浓度在大于20 mg/L时,亚硝酸盐不能作为电子受体.亚硝酸对反硝化作用的抑制可能来自于亚硝酸还原酶活性被抑制及 ATP的消耗量减少.亚硝酸盐对缺氧吸磷作用的抑制可能来自于及反硝化吸磷相关的酶活性被抑制、反硝化作用被抑制使其产能减少及反硝化中间产物抑制缺氧吸磷.  相似文献   

6.
利用反硝化聚磷菌进行动态与静态相结合的反硝化聚磷试验,研究A^2/O厌氧段聚磷菌的反硝化聚磷特性。研究结果表明,在A^2/O厌氧段中占聚磷菌总数52%的菌具有同步反硝化聚磷的生物学特性。当以NO3^- -N作电子受体进行聚磷时,其硝酸盐浓度应限制在50 mg/L以下,初始硝酸盐浓度越高,反硝化速率和缺氧聚磷速率及去除率越快,系统由聚磷转变为释磷的时间将延后。由于释/聚磷过程都需要碳源,所以,应控制进水的化学耗氧量(COD),以200 mg/L为最佳,使在释磷时有充足的碳源而在聚磷时碳源又较少。pH值对释/聚磷有不同程度的影响,在一定范围内,初始pH值越高,释磷效果越好,但当pH≥8.0时,会引起磷酸盐沉积而导致磷酸根浓度降低,从而无法正确判断释磷和生物聚磷效果,反硝化除磷系统的pH值应控制在7.0-7.5的范围内。  相似文献   

7.
A2O—MBR工艺反硝化脱氮除磷研究   总被引:7,自引:0,他引:7  
以自行设计的双反应器A2O-MBR为研究对象.对模拟生活废水的脱氮除磷进行了研究.结果表明:当N、P负荷为0.14和0.3 kg·m-3·d-1时,COD、N、P去除率分别为90.5%、80.6%和67.7%,系统不必外投硝酸盐即可实现反硝化除磷.具有很强的反硝化脱氪除磷能力,反硝化聚磷菌(DPAOs)占总聚磷菌(PAO)的比例和反硝化除磷量占总除磷量的比率分别达70.00%和69.81%;污泥回漉中硝酸盐量超过一定范围会发生对厌氧释磷的抑制.本系统中当进水ρ(COD):ρ(TP)为30:1时,进水COD与回流污泥硝酸盐的比例应高于30:1.采用问歇抽吸出水有助于延缓膜污染,膜出水不受污泥沉降性的影响.  相似文献   

8.
pH值对反硝化除磷的影响   总被引:14,自引:0,他引:14  
概述了SBR工艺中的反硝化除磷现象,讨论了SBR反硝化除磷工艺中pH值、碳源、聚磷菌与非聚磷菌竞争、污泥龄等影响因素。采用厌氧、缺氧SBR反应器研究了厌氧段和缺氧段pH值变化对以硝酸盐作为电子受体的反硝化除磷过程的影响。结果表明,当厌氧段pH=8.0、缺氧段pH=7.0±0.1时,脱氮除磷效果最好。  相似文献   

9.
广州地区城市污水碳量严重偏低、碳氮磷比例失调,其同步脱氮除磷一直是个难题,为此以SBR法就有机碳源浓度对反硝化除磷的影响进行研究.试验表明:在进水COD为180 mg·L-1的低碳运行下,反硝化除磷系统能够长期稳定运行,除磷效率达到99.2%;随着进水COD浓度从80 mg·L-1提高到240 mg·L-1,厌氧释磷量增加,缺氧反硝化速率与吸磷速率增加;缺氧段存在的COD浓度越高,对缺氧吸磷的抑制作用越大,随着缺氧段有机物浓度的增加,反硝化速率变大,吸磷速率变小,说明缺氧段存在外碳源会优先支持反硝化作用,抑制PHB作为内碳源的使用.  相似文献   

10.
有机碳源浓度对反硝化除磷的影响研究   总被引:6,自引:0,他引:6  
广州地区城市污水碳量严重偏低、碳氮磷比例失调,其同步脱氮除磷一直是个难题,为此以SBR法就有机碳源浓度对反硝化除磷的影响进行研究.试验表明:在进水COD为180 mg.L-1的低碳运行下,反硝化除磷系统能够长期稳定运行,除磷效率达到99.2%;随着进水COD浓度从80 mg.L-1提高到240 mg.L-1,厌氧释磷量增加,缺氧反硝化速率与吸磷速率增加;缺氧段存在的COD浓度越高,对缺氧吸磷的抑制作用越大,随着缺氧段有机物浓度的增加,反硝化速率变大,吸磷速率变小,说明缺氧段存在外碳源会优先支持反硝化作用,抑制PHB作为内碳源的使用.  相似文献   

11.
高效亚硝酸型反硝化菌生长特性及脱氮研究   总被引:3,自引:0,他引:3  
采用定向筛选法,对反硝化污泥进行驯化和富集,得到了富含亚硝酸型反硝化菌的混合菌体.采用批式试验考察了不同环境因子对该菌体生长和脱氮速率的影响,构建了亚硝酸盐降解动力学模型,初步探讨了菌体在填料床生物膜反应器中的脱氮性能.结果表明,该菌体属于兼性厌氧菌,只有在氧缺乏的环境下才能发生反硝化作用;最适的生长和脱氮条件是以柠檬酸三钠为碳源,ρ(TOC)∶ρ(N)=4,温度30℃,pH=9.菌体在此条件下具有很高的活性,比脱氮速率达0.25 h-1,是相关文献报道的6~10倍;具有较强的耐盐特性,可耐受13%的盐浓度;在填料床生物膜反应器中运行稳定,具有较强的抗碳氮源冲击负荷的能力.本研究有利于促进新型短程硝化反硝化工艺的实施以及解决传统反硝化过程中亚氮积累的问题.  相似文献   

12.
为了提高反硝化除磷工艺的脱氮除磷效率,以反硝化除磷污泥为研究对象,采用静态试验进行对比研究,考察碳源浓度对缺氧反硝化聚磷的影响.结果表明:当缺氧段初始碳源浓度为10.0 mg/L时,亚硝酸盐积累严重,反硝化聚磷受到抑制;当缺氧段初始碳源浓度由24.6 mg/L上升至176.8 mg/L时,随着碳源浓度的增加,反硝化速率...  相似文献   

13.
不同电子受体影响下的反硝化除磷过程   总被引:1,自引:0,他引:1  
为进一步了解反硝化除磷菌的代谢行为,以序批式反应器(SBR)在厌氧/好氧条件下培养的活性污泥为对象,进行批次试验,研究了不同电子受体对反硝化缺氧吸磷的影响.结果证实:只要有电子受体存在,不论是硝氮(NO3--N)还是亚硝氮(NO2--N),缺氧吸磷都会发生,但NO2--N的缺氧吸磷量相对较少;反应开始时的电子受体质量浓度对反应过程影响很大,试验中NO3--N质量浓度为30mg/L、NO2--N质量浓度为20mg/L时吸磷量和吸磷速率均达到最高值;低于该值时,吸磷量和吸磷速率随着电子受体质量浓度的提高而增加;高于该值时,吸磷量和吸磷速率随着电子受体质量浓度的提高而减少;NO2--N质量浓度达80mg/L时,没有发现对反应的抑制作用;好氧吸磷效果好于缺氧吸磷.试验还发现反应器在厌氧/缺氧条件下连续运行时,反硝化除磷菌的厌氧释磷和缺氧吸磷能力将很快丧失.  相似文献   

14.
 为探讨反硝化除磷工艺对低碳源生活污水的处理性能,在序批式移动床生物膜反应器(SBMBBR) 中,通过对反硝化除磷菌的驯化,考察厌氧过程中COD 质量浓度、pH 值对释磷以及缺氧阶段NO3--N 和NO2--N 质量浓度对反硝化吸磷性能的影响。实验结果表明:周期为8 h 的运行中,COD、氨氮、TP 的去除率分别达到95%、90%、90%以上,出水质量浓度分别为8.07、3.67、0.46 mg/L,达到城镇污水一级A 排放标准。NO3--N 作为电子受体,60 mg/L 取得最佳的缺氧吸磷效果,高于20 mg/L 的NO2--N 作为电子受体时,反硝化除磷菌活性受到抑制。研究表明,在序批式移动床生物膜反应器中,以NO3--N作为电子受体进行反硝化除磷具有很好的处理效果。  相似文献   

15.
低温环境下聚磷微生物的富集驯化研究   总被引:1,自引:0,他引:1  
针对低温环境下生物强化除磷工艺的启动与运行,研究了厌氧/好氧和厌氧/缺氧两种模式富集驯化好氧聚磷菌和反硝化聚磷菌的效果.研究表明,以城市污水处理厂活性污泥为接种污泥,在8~11℃的低温环境下能有效完成好氧和反硝化聚磷菌的富集驯化,厌氧/好氧和厌氧/缺氧反应器分别在第40d和第80d达到稳定状态.厌氧/好氧反应器内污泥释磷和吸磷能力强于厌氧/缺氧反应器内污泥,分别为27.7 mg P/g MLVSS,35.2mg P/g MLVSS,17.4mg P/g MLVSS,23.1mg P/g MLVSS.反硝化聚磷菌可以在好氧条件下以氧为电子受体快速吸收磷,而好氧聚磷菌在缺氧环境中以硝酸盐为电子受体立即吸收磷的能力较弱,仅为6.9mgP/gMLVSS,占好氧吸磷的19.6%.厌氧/好氧和厌氧/缺氧两个反应器富集前后聚磷菌(Accumulibacter)的丰度分别由9.3%(接种污泥)增加到79.3%(好氧聚磷菌)和61.6%(反硝化聚磷菌),同样表明了在该低温环境下两个生物强化除磷工艺均实现了Accumulibacter的有效富集.  相似文献   

16.
碳源对反硝化除磷的影响   总被引:6,自引:0,他引:6  
文章研究碳源对反硝化除磷的影响。试验结果表明:反硝化除磷菌最大放磷量与碳源有关,当ρCOD>800 mg/L时,最大放磷量达到50 mg/L,而ρCOD<200 mg/L时,反硝化除磷菌的最大放磷量还不到5 mg/L;反硝化除磷菌最大放磷量所需时间也与碳源有关,随着COD质量浓度的降低,放磷所需时间也在减少,当COD的质量浓度从440~110 mg/L时,所需时间则从120~10 min。  相似文献   

17.
生物反硝化法是去除水体中硝酸盐的有效方法。鉴于生物反硝化过程中有机碳源不足的问题,选择甲醇、乙醇、葡萄糖作为反硝化碳源,研究它们对反硝化的促进作用;同时研究C/N比以及温度对反硝化过程的影响。结果显示:甲醇、乙醇和葡萄糖作为反硝化碳源时,均可获得较高的硝酸盐氮去除率。以乙醇为碳源时,反硝化速率进行的最快,硝酸盐氮去除率高,中间副产物亚硝酸盐氮和氨氮积累少,是最优的反硝化碳源;C/N比对反硝化过程影响显著,C/N比越高,脱氮速率越快;另外温度对反硝化也有着重要的影响,在25℃、35℃时的脱氮效果远好于10℃时的脱氮效果。  相似文献   

18.
连续流双污泥系统反硝化除磷脱氮特性   总被引:8,自引:0,他引:8  
以生活污水为处理对象 ,对基于缺氧吸磷理论开发出的连续流厌氧 /缺氧 -硝化 (A2 N)双污泥新工艺反硝化除磷脱氮的性能进行了考察 .试验结果表明 :A2 N双泥系统能使硝化菌和反硝化聚磷菌分别在各自最佳的环境中生长 ,利于系统脱氮除磷的稳定和高效 ,可控制性也得到了提高 .研究发现 ,当进水 ρ(C) / ρ(N)为 3.97时 ,ρ(总氧 ,TN) / ρ(总磷 ,TP)和化学耗氧量 (COD)去除率分别为 80 .99% ,92 .87%和 91% ;而当提高进水 ρ(C) / ρ(N)至 6 .4 9时 ,可进一步提高脱氮除磷效果 ,ρ(TN) ,ρ(TP)和COD去除率分别达到 92 .7% ,97.95 %和 95 % .可见 ,该工艺较适合进水COD/ ρ(TN) 偏低的城市污水脱氮除磷处理 .  相似文献   

19.
甲醇与葡萄糖为碳源在反硝化过程中的比较   总被引:16,自引:0,他引:16       下载免费PDF全文
在颗粒滤床反应器内 ,以葡萄糖或甲醇为碳源 ,碳源充足时 ,均可以比较完全地去除硝酸盐 ,但以葡萄糖为碳源的最佳碳氮比较甲醇为碳源高得多 ,为 6∶1~ 7∶1 (C6H1 2 O6∶NO-3 N)。当碳源不足时 ,反硝化过程存在亚硝酸盐积累现象 ,且葡萄糖为碳源时积累更严重。以CH3OH为碳源进行的反硝化速率较以C6H1 2 O6 为碳源的快得多 ,在相同条件下快 3倍。在本实验条件下 ,反硝化过程表现出 0级反应特征 ,k (CH3OH) =1 60mg/L·h ,k(C6H1 2 O6) =42mg/L·h。  相似文献   

20.
研究了A2/O与悬浮填料生物膜(SCBP)中试复合工艺的除磷效率,并考察了影响因子COD/TP与DO对除磷的影响。结果表明:总磷平均去除率为82%,达到GB/T18921-2002景观用水水质要求。当硝酸盐含量急剧下降至0.20mg/L以下时,反硝化除磷菌不再以硝酸盐作为电子受体进行聚磷活动,厌氧磷释放的最佳碳磷比为60。添加纳米改性的悬浮填料后,好氧池的溶解氧为2.0mg/L时,出水TP为0.3~0.35mg/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号