首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用X_2~+同位素分子(H_2~+、D_2~+、T_2~+)谐波辐射的特点,提出一种有效获得高强度谐波连续区和孤立阿秒脉冲的方法.研究表明,在不同脉宽激光作用下,H_2~+、D_2~+和T_2~+分子可分别进入电荷共振增强电离区域.当激光振幅区域的半个周期正好处于电荷共振增强电离区域时,具有最大辐射能量的谐波能量峰正好具有最佳的辐射强度.随后,在此区域引入半周期单极激光场,被选择出来的谐波能量峰可以继续延伸,进而获得一个仅由单一能量峰贡献而产生的高强度谐波连续区.通过叠加连续区上的谐波可以获得脉宽仅为42 as的孤立阿秒脉冲.  相似文献   

2.
理论研究了H_2~+在不同振动态下辐射高次谐波的特点.结果表明,在低振动态下,谐波辐射呈现红移现象.随着振动态增大,谐波红移现象逐渐减弱甚至消失.通过分析谐波辐射时频分析图以及双H核辐射谐波的特点,给出了振动态对H_2~+谐波辐射频移的原因.  相似文献   

3.
理论研究和认证了振动态H_2~+偶次谐波的辐射机制.结果表明,偶次谐波是由于谐波辐射在激光上升和下降区间的不对称效应所产生的.具体来说,在低振动态下,偶次谐波主要来源于激光下降区间.随着振动态增大,来源于激光下降区间的偶次谐波强度减弱;但是,一些来源于激光上升区间的偶次谐波逐渐增强.  相似文献   

4.
近来人们已经研究了H_2~+分子较低阶阈下谐波的极化,研究表明基态和激发态之间的共振对这些较低阶谐波的极化有重要影响。该文通过求解含时薛定谔方程的方法研究了较高阶阈下谐波的极化。结果表明:激发态仅对较小取向角下的较高阶阈下谐波的极化有影响;此外,长短电子轨道之间的干涉也对较高阶阈下谐波的极化有重要影响。该文的结果可对分子阈下谐波极化的复杂起源提供参考。  相似文献   

5.
本文通过求解一维含时薛定谔方程理论研究了氦原子在不同激光场中高次谐波的产生,计算结果表明:使用单色场与静电场及半周期场的合成场可有效拓宽谐波谱并实现对量子路径的操控,最终由短量子路径贡献于谐波的高阶部分.  相似文献   

6.
理论提出了一种利用非均匀组合场驱动He原子产生高强度keV高次谐波光谱和阿秒脉冲的方法.结果表明,适当叠加多周期双色中红外场与一束少周期近红外场时,谐波截止能量可以得到有效延伸,并且谐波光谱呈现由单一量子路径贡献而成的平台区.随后,适当引入一束紫外光源,在共振增强电离的影响下,谐波辐射效率可以增强500倍.最后,通过叠加平台区的谐波,可获得多个脉宽持续范围在35 as以下的单个阿秒脉冲.  相似文献   

7.
纳米尺寸金属颗粒膜可以产生较大的表面二次谐波增强。本测量了用溅射法制备的纳米尺寸Au颗粒的反射二次谐波,其增强因子可达10%2数量级。理论计算了局域场因子与波长的关系曲线,对于用Nd:YAG激光器输出的1.06μm波长的基频光,可以获得较强的倍频光的局域场增强,对金属颗粒尺寸对局域场因子的影响进行了计算和分析。  相似文献   

8.
本文理论研究了在特定激光波形下, H2+核间距对单阶谐波增强的影响. 研究结果表明, 当特定激光波形驱动原子时, 谐波光谱可以呈现单阶谐波强度增强; 但是, 当用相同激光波形驱动H2+时, 单阶谐波强度增强的现象与H2+核间距离有关. 具体来说, 当H2+在平衡位置时, H2+谐波光谱呈现单阶谐波增强现象; 当H2+核间距在3~7 a.u.变化时, 单阶谐波增强现象消失; 当H2+核间距大于8 a.u.时, 单阶谐波增强会再次出现. 理论分析表明, 多通道谐波干涉是导致H2+单阶谐波强度变化的原因.  相似文献   

9.
数值研究了He~+在啁啾场与单极场下发射高次谐波及阿秒脉冲的特点.计算结果表明,当He~+的初始波函数布局在基态与激发态的叠加态时,其谐波强度比单基态时增强7个数量级.随后在啁啾场及单极控制场的作用下,谐波发射的截止能量明显增强,谐波的干涉结构也明显减小.引入空间非均匀效应,谐波截止能量得到进一步延伸,形成一个320eV的平台区.通过叠加谐波,可获得3个持续时间在45~48as的X射线脉冲.其强度比单基态输出的脉冲增强5~6个数量级.  相似文献   

10.
数值研究了He~+在啁啾场与单极场下发射高次谐波及阿秒脉冲的特点.计算结果表明,当He~+的初始波函数布局在基态与激发态的叠加态时,其谐波强度比单基态时增强7个数量级.随后在啁啾场及单极控制场的作用下,谐波发射的截止能量明显增强,谐波的干涉结构也明显减小.引入空间非均匀效应,谐波截止能量得到进一步延伸,形成一个320eV的平台区.通过叠加谐波,可获得3个持续时间在45~48as的X射线脉冲.其强度比单基态输出的脉冲增强5~6个数量级.  相似文献   

11.
理论研究了不同激光条件下H2+和D2+谐波截止附近区域强度的变化. 结果显示,在低激光强度下,当采用短脉宽激光场时,H2+谐波强度大于D2+谐波强度. 随着脉宽增大,D2+谐波强度增强并且大于H2+谐波强度. 在高激光强度下,当采用短脉宽激光场时,虽然H2+谐波强度依然大于D2+谐波强度,但其强度差比低激光强度时有所减小. 当采用长脉宽激光场时,D2+谐波强度大于H2+谐波强度. 理论分析表明,不同尺度的核运动是导致H2+和D2+谐波辐射强度不同的原因.  相似文献   

12.
理论研究了H2+分子取向对谐波空间分布的影响. 结果表明:当激光偏振方向与分子轴方向一致时, 谐波辐射满足激光场正向时, 负向H核谐波辐射强度大于正向H核;激光场反向时, 正向H核谐波辐射强度大于负向H核. 随着分子取向角增大, 谐波辐射强度减弱, 尤其正向H核对谐波辐射的贡献明显减小, 因此导致正负向H核的谐波辐射强度差逐渐增大. 最后, 通过研究谐波辐射的时频分析以及电子波包随时间的演化给出了电子在双H核之间运动以及谐波空间分布的原因.  相似文献   

13.
理论提出了一种利用不对称极化门方案来增强阿秒脉冲强度的方法.结果表明,当两束圆偏振激光场采用不对称的强度时,不仅谐波干涉减小,而且谐波辐射强度明显增强,呈现了一个带宽在85 eV几乎由单一量子路径贡献产生的超长连续平台区.最后,通过叠加该平台区的谐波辐射光谱可以获得一个半高全宽在52 as的超短单个阿秒脉冲.  相似文献   

14.
分子取向在物理和化学中有着广泛的应用,然而,实验上的取向度很难评估.通过求解二维含时薛定谔方程的数值方法,研究了线性不对称分子HeH2+和H2+3的高次谐波产生,展示出线性不对称分子既发射奇次谐波又发射偶次谐波.另外,数值和解析方法模拟表明:不对称分子的奇偶高次谐波产生对取向度和分子结构都很灵敏.基于观测结果,提出了一...  相似文献   

15.
理论研究振动态H_2~+在抽运探测激光驱动下对谐波辐射强度的影响.结果表明,在低振动态下(例如:υ=0),谐波辐射强度随抽运探测激光场延迟时间的增大而减小.随着振动态升高(例如:υ=2),不同延迟时间下的谐波辐射强度差减小.当振动态继续升高时(例如:υ=4),较大延迟时间下的谐波辐射强度反而高于较小延迟时间下的谐波辐射强度.最后,通过研究谐波辐射的时频分析图给出了谐波辐射强度变化的原因.  相似文献   

16.
通过数值求解二维含时薛定谔方程,研究了氩原子在双色反向旋转椭圆偏振激光场作用下的高次谐波发射,双色反向旋转椭圆偏振激光场是由2个共面的频率为rω和sω(r=1,s=2,3,4,ω是圆偏振的基频)时的激光脉冲组成.通过理论计算我们发现在不同椭偏率下的氩原子的高次谐波谱的特性与2015年Milosevic[26]提出的选择定则一致.倍频场为2倍频,驱动激光场为反向旋转圆偏振激光脉冲时,高次谐波谱的3q阶次谐波被抑制,驱动激光场为反向旋转椭圆偏振激光脉冲时,高次谐波谱中被抑制的3q阶次谐波增强;倍频场为3倍频,驱动激光场为反向旋转圆偏振和椭圆偏振激光脉冲时,高次谐波谱的偶数阶次谐波被抑制;倍频场为4倍频,高次谐波谱中与5q阶次相邻的谐波阶次产生,其余谐波阶次被抑制,驱动激光场为反向旋转椭圆偏振激光脉冲时,被抑制的谐波阶次增强.我们计算了相对应激光场下的Lissajou’s图形,从图中可以看到随着椭偏率的变化,Lissajou’s图形的对称性被破坏,相应的高次谐波谱的特性发生变化;Lissajou’s图形的对称性不变化,相应的高次谐波谱的特性不发生改变.  相似文献   

17.
本文介绍了测量Mev量级单电子双原子分子离子(D_2~+、DH~+、H_2~+等)通过碳膜的透射和在碳膜中的电子损失截面、电了俘获截面的实验方法和新近的实验结果。略述了我们把Brandt-Sizmann理论扩展到D_2~+、DH~+、H_2~+与固体碳相互作用的计算。本文还得到D_2~+、DH~+、H_2~+的裸核集团在膜的出口俘获一个电子后形成电缚分子态的几率。  相似文献   

18.
理论研究了He原子在空间非均匀激光场下辐射谐波的量子路径调控.计算结果表明,随着空间非均匀激光场引入位置由负向-r0到正向-r0移动,谐波截止能量呈单调递增趋势,而且只有单一的短量子路径对最大谐波辐射过程起作用.通过分析谐波辐射时频分析图和电子含时波包演化图,对谐波辐射的特点给出了合理解释.随后适当引入一束太赫兹激光场,谐波强度被增强2个数量级,并且形成一个1208eV的超长平台区.最后,通过叠加谐波,可获得一系列持续时间在34as的超短脉冲,其波段覆盖为10~1nm.  相似文献   

19.
基于亚波长铌酸锂薄膜刻蚀导模共振超表面结构,理论模拟了超表面结构的光学响应特性,探讨了刻蚀微纳结构的周期、填充因子和刻蚀深度等参量对透射光谱的影响,同时研究了不同偏振态和入射角度的光源对光谱线宽的作用;利用非对称的光栅结构设计,使连续谱中的束缚态(bound states in the continuum, BIC)衰退为高Q值(>10 000)的准BIC模式;利用束缚态的局域场增强效应,将亚波长铌酸锂薄膜的二次谐波转化效率提升了5个数量级.模拟结果表明,当入射基频波的峰值功率密度在约1 GW/cm2量级时,可实现紫外波段二次谐波高效转化,即单次穿过亚波长铌酸锂薄膜后,出射的紫外波段二次谐波转化效率高达10-3量级.这为提升微纳结构、光学表界面体系的非线性响应特性提供了思路和设计方案.  相似文献   

20.
等离激元纳米结构能够把光场局域到非常小的空间,而应用在表面增强光谱、生物传感和太阳能电池等领域.我们设计了一种对光场具有高局域和强吸收特性的基于金-介质-金三明治结构的圆柱体微腔结构.计算结果显示:该圆柱微腔能够局域入射光的绝大部分能量,产生强的平均电磁场能量密度.微腔内的平均电磁场能量密度增强因子G达到10~3~10~4数量级,而且G值随着介质层的厚度、介电常数和圆饼半径的变化呈现出了一定的变化规律.在正入射波的条件下,经计算得到了4.8μm~6μm范围的反射光谱和吸收率C(C=1-R_(min)),通过优化介电常数和结构的几何参数,C值达到99%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号