首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 116 毫秒
1.
文章证明了对任意自然数n≥1,P≥1,K≥1,当m1=2p+3或2p+4时,图W(k)m1U Kn,p为优美图,其中W(k)m1为由k个轮Wmi(i=1,2,…,k)的中心顶点合并后构成的连通图;当m1≥3,n≥[m1/2]时,非连通图W(k)m1∪St(n)为优美图;对任意自然数P≥1,图W(k)2p2+i∪Gpi为优美图,其中,Gpi表示p条边的i-优美图(i=1,2);对任意自然数n≥1,当m1=2n+5时,图W(k)m1∪(C3VKn)为优美图.  相似文献   

2.
Lucas序列Un(u)和Vn(u)定义为:U0=0,V0=2,U1=1,V1=u,Un=uUn-1-Un-2,Vn=uVn-1-Vn-2,n≥2.本文分别给出了同余式组 UN r(u)≡0 mod NVN r(u)(≠)2 mod N,UN r(u)(≠)0 mod NVN r(u)≡2 mod N和UN r(u)(≠)0 mod NVN r(u)(≠)2 mod N成立的几个充要条件,并对满足同余式组的u的个数进行估计,其中N=pq是两个奇素数之积,q=k(p 1) r,|r|<(p 1)/(2),k≥7,((u2-4)/(p))=-1且gcd(u,N)=gcd(u2-4,N)=1.  相似文献   

3.
本文用组合分析的方法及数学归纳法证明了以下一些组合关系式. (1)C(n+k,r)=sum from m=0 to k (k!)/((k-m)!m!)C(n,r-m); (2)sum from m=0 to n K~m C(n,m)=*(1+k)~n; (3)sum from k=0 to n K~m=sum from k=1 to n S(m,k) ((n+1)!)/((k+1)(n-k)!); (4)sum from p=0 to m F(n,p)=((n+m)!)/(n!m!); (5)sum from q=1 to m qF(n,q)=((n+m)!n)/((m-1)!(n+1)!); (6)sum from p=1 to n F(p,m)=((n+m)!)/((m+1)!(n-1)!); (7)sum from r=0 to S (F_(mi2r)F_(n+2r)+F_(m+2r+1)F_(n+2r+1)); =F_(2??+1)(F_(2??+1)F_(m+n+1)+F_(2??)F_(m+n)); (8)sum from k=0 to n C_k=C_(n+5)-2; (9)S_k??5=sum from p=0 to n C_(k+5??)=C_(5n+1+k+γ_(k,5));  相似文献   

4.
设f(x)〔C:二,f(x)~丛一 名飞一二(a、eoskx bk sinkx).名k.0A、(f,x),U。(f,x)_.lf’,,_.二、二,、、」、一丽J_二’、x,I-t声“n、t’u‘’二,‘、_1“巨、11‘,汀宁 ‘云p(u)。。skt,k一Ik{二,二‘,,,d,=。“’,1 imp普双)二1(k二i,2,…)。我们知道(二〕,假如对每一正整数k,成立着 i一p聋.)1 im—=皿一一p釜.〕价、笋0,(1)那么,U二(f,x)迫近f(x)的饱和阶为O(1一p圣u〕),并且,当r(x)属于饱和类时,习吵‘Ak“,x)〔L.但是,逆定理并不成立。也就是说,E协Ak“,x)〔L一并不一定包‘.1 k.1含u二。.f,x)一f(x)==O(1一p圣.))。只有在ua(t))o…  相似文献   

5.
对任意给定的正整数k≥2及任意正整数n,定义n的Smarandache k次补数ak(n)为最小的正整数,使得nak(n)为一个完全k次方幂,即ak(n)=min{u:u·n=mk;u,m∈N},其中N为所有正整数之集合.利用解析方法研究了级数∑+∞n=1(1)/((nak(n))s)的敛散性,并给出一个有趣的恒等式.  相似文献   

6.
文章证明了对任意自然数n≥1,p≥1,k≥1,当m1=2p+3或2p+4时,图W(k)m1∪Kn,p为优美图,其中Wm1(k)为由k个轮Wmi(i=1,2,…,k)的中心顶点合并后构成的连通图;当m1≥3,n≥[m1/2]时,非连通图Wm1(k)∪St(n)为优美图;对任意自然数p≥1,图W2p+2+i(k)∪Gip为优美图,其中,Gpi表示p条边的i-优美图(i=1,2);对任意自然数n≥1,当m1=2n+5时,图Wm1(k)∪(C3∨■)为优美图。  相似文献   

7.
函数空间的逼近理论由于在近似方法中的应用而被人们所重视。Di Guglielmo,F.在[1]中研究了空间 W~(m,p)(R~n)(p≥2)的多项式逼近问题。空间 W~(m,p)(Ω)是指具有如下性质的函数 u 组成的集合:W~(m,p)(Ω)≡{u∈L~p(Ω):D~αu∈L~p(Ω),0≤|α|≤m,其中 D~αu 是意义下的广义(或广义函数意义下的)偏导数},其中α={α_1,…,α_n}是非负整数α_j 的一个 n 重组,|α|=sum from j=1 to n α_j,D_j=(?)/((?)x)(对于1≤j≤n),D~α=D_1~(α_1)…D_n~(α_n).Ω为有界或无界区域。范数为‖u‖_m~p,p=sum from 0≤|α|≤m ‖D~αu‖_p~p, 1相似文献   

8.
一个变分双曲型组的解   总被引:3,自引:0,他引:3  
本文研究带Dirichlet条件的边界值问题{□u+△G(u)=f(t,x),(t,x)∈Ω≡(0,π)×(0,π), (*)u(t,x)=0, (t,x)∈aΩ,的解的存在性,这里口是波算子a2/at2-a2/ax2,GRn→R是一连续函数.设σ(口)={k2-m2,k,m∈N}记波算子口的特征值的集合,(a2G(u)/auiaui)记u∈Rn.点处的Hessian阵.假定σ((a2G(u)/auiauj))∩σ(□)=φ.再设E={u|u(t,x)=∑k,mψkm(t,x)Ckm, Ckm ∈ Rn k,m ∈ N,∑k,m(k2+m2+1)|Ckm|2 <+∞},Y={y|y(t,x)=∑i,k,mμikmψkm(t,x)ei,k2 - m2 <γi(u),μikm ∈ R,k,m ∈N,∑k,m(k2+m2+ 1)|μikm|2<+∞,i= 1,2,……,n} Z={z|z(t,x)=∑i,k,mμikmψkm(t,x)ei,k2 -m2>γi(u),μikm ∈ R,k,m ∈ N ,∑k,m(k2 + m2+1)|μikm|2 <+ ∞,i = 1,2,……,n}.对Y中的k2-m2记ξ(‖u‖0) =min‖v‖0≤‖u‖0 mink,m∈N min1≤i≤n{γi(v)-(k2- m2) > 0},对Z中的k2-m2,记η(‖u‖0)=min‖v‖0≤‖u‖0 mink,m∈N min1≤i≤n{k2-m2-γi(v)>0},这里‖·‖0记(L2(Ω))n.假设∫+∞1ξ(s)ds=∞, ∫+∞1η(s)ds=∞.在上述条件下,我们使用R.F.Manasevich的最大值最小值定理证明问题(*)的弱解u0∈(H1(Ω))n的存在性和唯一性.  相似文献   

9.
我们考虑以 e_A=e_(α1)…e_(?)(A={α_1,…,α_h}(?){1,2,…,n},1≤α_1<α_2<…<α_h≤n)为基底元素的实 Clifford 代数 A_n(R),其中 e_1=1,e_k~2=1(k=2,3,…,n),e_ke_m+e_me_k=0(k(?)m,k、m=2,…,n).并且用 V_n 表示由 e_1,…,e_n 所张成的 A_n(R)的子空间.V_n 中的元素为 x=sum from k=1 to n x_ke_k,An(R)中元素为 u=sum from A x_Ae_A.设 D 为 V(?)中的连通开集.在实 Clifford 分析中研究函数类  相似文献   

10.
在Δk∈Lp(Rn),u0∈Lp(Rn)或u0 ∈Lp(Rn)n∩Lp(Rn),其中p,p'∈[1,+∞]满足p/1+p/1'=1条件下,证明了耗散型聚合方程Cauchy问题是局部适定的.进一步地,在Δk ∈L∞(Rn),初值u0≥0满足u0 ∈L(R*)条件下,证明了耗散型聚合方程Cauchy问题是整体适定的.  相似文献   

11.
研究了高阶摄动波动方程 ttu+ (-Δ) mu+V(x)u =0 ,u(x ,0 ) =0 , tu(x ,0 ) =f(x) ,x ∈Rn,n >3m ,解的Lp -Lp′ 估计 在摄动和始值 f(x)为紧支且V(x)充分小的假定下 ,得到了该问题解的Lp-Lp′ 估计 :‖u(· ,t)‖p′ ≤Ct-d‖f‖p,t >0 ,其中m >1,d =n/m (1/p- 1/p′) - 1,1/p+ 1/p′=1,m /(2n) <1/p- 1/2 相似文献   

12.
设Vk(A,B,λ,μ)表示在单位圆盘U={z∶|z|<1}内部解析且对于z∈U满足|[(1-λz)Hμp(z)-1]/[A-B(1-λz)Hμp(z)]|<1的函数p(z)=1-∑∞n=k|bn|zn(k=1,2,…)的类,其中-1≤B<A≤1,0≤λ<(A-B)/(1-B)≤1,μ>-1,Hμp(z)=(1)/((1-z)μ 1)*p(z)=1-∑∞n=k((μ 1)...(μ n))/(n!)|bn|zn.c 1zc 1)∫z0tcf(t)dt,c>-1的保持积分的算子类.  相似文献   

13.
蒲利群 《河南科学》2007,25(3):358-360
mi(1≤i≤r)为偶数且r∑(i=1)mi=2k(k≥1).Kn,n为偶图,I为Kn,n的一因子.证明了Kn,n+I可分解为(m1,m2,…,mr)-圈的充分必要条件为2k│n(n+1)且n为奇数.进一步,Kn,n+I可分解为循环的(m1,m2,…,mr)-圈充分必要条件为2k=n+1且n为奇数.  相似文献   

14.
设f(x)〔C:一,f(x)~要 石 公(an eos 扭.1nx b。5 in nx).公A。(x)tJ二(f,x)=1「,。,__二、下J一ff‘、入一工少un、t’u‘’u二(t)=1一二~十咨二_(。,.之‘p COSKt,七.Ik对于正整数p,记 (的!》 △pP,=名(一])甲留0如)p一,z。、(幻(的 又答)p一p。“我们的兴趣在于研究量△pp 设p、j是正整数,i己和U。“,x)迫近f(x)的渐近性质之间的关系。‘、.矛了Pk ,Sp(j)“云(一1)卜k k.0豁,s·‘。’“。’Cp,。= qCl、,;“一三Sp(p十‘)Cp ,,q一在〔5〕中作者证明了 定理A.设m是正整数,u。(O》0,且满足下列条件:仁,2,11一u。(t)d。=。(!△2田…  相似文献   

15.
研究了高阶摄动波动方程ttu+(-Δ)mu+V(x)u=0,u(x,0)=0,tu(x,0)=f(x),x∈Rn,n>3m,解的Lp-Lp′估计.在摄动和始值f(x)为紧支且V(x)充分小的假定下,得到了该问题解的Lp-Lp′估计:‖u(*,t)‖p′≤Ct-d‖f‖p,t>0,其中 m>1,d=n/m(1/p-1/p′)-1,1/p+1/p′=1,m/(2n)<1/p-1/2相似文献   

16.
研究一类非线性Schrdinger方程iut=-Δu-k(x)|u|p-1u的初值问题,其中k(x)为Rn上的有界可微函数,当n≥3时,1+(4)/(n)≤p<(n+2)/(n-2);当n=2时,3≤p<+∞.使用推广的能量方法讨论了该方程初值问题的爆破性质.  相似文献   

17.
若■=n!/(i!(n-i)!)(n,i∈N~*且n≥i)表示二项式系数,第l个Fibonacci数为F_l,其中,l是非负的整数;对任意正整数n和非负整数k,数列{■}_(i=0)~n和{F_(k+i)~p}_(i=0)~n的卷积为f(k,p,n)=■F_k~p+■F_(k+1)~p+…+■F_(k+n)~p.论文利用初等数论方法证明了p=4m(m∈N~*)时,等式f(k,4m,n)=1/25~m[L_(2m)~n·L_(4mk+2mn)+C_(4m)~1(-1)~(k+n+1)L_(2m-1)~nL_((4m-2)k+(2m-1)n)+C_(4m)~2L_(2m-2)~n L_((4m-4)+(2m-2)n)+C_(4m)~3(-1)~(k+n+1)L_(2m-3)~nL_((4m-6)k+(2m-3)n)+…+C_(4m)~(2m)·2~n]成立.  相似文献   

18.
关于二阶线性递归序列的一些恒等式   总被引:1,自引:0,他引:1  
设ωn+2=Aωn+2-Bωn(B≠0) (n=0,±1,±2,…),我们完全确定了何时有恒等式ωpn+r=nΣk=0(nR)i n-kskωqk+r (n∈N={0,1,2…}).设u0=0,u1=1,且u+2=Aun+1-Bun(n=0,±1,±2,…),对l,m∈N及函数fN→{k∈Zωk≠0},我们证明了关于l,m对称的恒等式1-1Σk=0Bf(k)uf(k+m)-f(k)ωf(k)ωf(k+m)=m-1Σk=0Bf(k)uf(k+l)-f(k)ωf(k)ωf(k+l)它可用于计算无穷级数+∞Σk=0Bf(k)uf(k+m)-f(k)/(ωf(k)ωf(k+m).本文的结果推广了南献[1]、[2]、[3]、[7]、[8]中相关的工作.  相似文献   

19.
设f(x)∈Lp(Ωn),1≤p≤2,δ>(n-1)(1p-12),σδN(f)(x)表示f(x)在n维球面Ωn上的Cesàro平均.本文证得limN→∞1N+1∑Nk=0|σδk(f)(x)-f(x)|2ak=0 a.e.x∈Ωn.其中权系数ak≥0满足1≤1N+1n[]k=0ak≤A(A是一个绝对常数).  相似文献   

20.
数学归纳法是证明含有自然数n的数学命题p(n)的重要方法。其要点是: 1~0验证命题p(n)当n=k_0时,p(k_0)成立; 2~0设n=k(或n≤k)时,p(k)成立(归纳假设),推证当n=k 1时,p(k 1)也成立. 由1~0,2~0可知,命题p(n)对于从k_0起的一切自然数~n都成立。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号