首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 阿特拉津因其普遍性、高污染性和难降解性一直是历年来的研究热点.其降解方法很多,其中基于阿特拉津降解菌、生物固定化和一些无机材料的生物降解是最有效的.本文利用磷酸交联剂对聚乙烯醇(PVA)进行改性,以珍珠岩作为添加介质,对阿特拉津降解菌——Pseudomonas W4包埋固定,制备出一种新型珍珠岩-磷酸化聚乙烯醇(PPVA)生物活性材料(简称珍珠岩-PPVA),并对其最佳制备条件以及在不同反应条件下该材料降解阿特拉津的效果进行探讨.该材料最佳制备条件为,珍珠岩(粒径为0.60~2.00mm)/10% PVA(V/V)=35/65,Pseudomonas W4包埋量1.0g/L,磷酸盐浓度1.25mol/L;外加碳源、磷源能够促进其降解阿特拉津;珍珠岩-PPVA在pH值为5.99~9.03时具有较好的降解效果,其抗酸碱能力优于游离W4菌.说明珍珠岩-PPVA可有效去除阿特拉津,可以作为新型材料加以深入研究应用于废水或土壤中阿特拉津降解.  相似文献   

2.
为了进一步提高微生物燃料电池的运行性能,提高硝酸盐降解率及改善电能输出情况,以城镇污水处理厂二沉池污泥为接种源,硝酸钠为电子受体运行典型单室空气阴极微生物燃料电池(MFC)。以1g/L无水乙酸钠、50 mmol/L磷酸盐缓冲液为模拟废水成功启动MFC,运行稳定后,通过碳源、碳氮比(C/N)、硝酸盐浓度、温度4个因素来优化MFC运行性能。实验结果表明:在温度为30℃、无水乙酸钠为碳源、C/N=5∶1、硝酸盐质量浓度为200mg/L时MFC运行性能最佳,硝酸盐去除率均可达到90%以上,最大电压可达到0.462V。最佳状态下经6个周期运行,MFC最高电压为0.62V,功率密度高达4.53 W/m2;交流阻抗分析最佳运行状态下MFC内阻为130Ω,扫描电镜观察到电极表面微生物种类及数量均明显增多。研究证明MFC可以作为含硝酸盐废水产能净化的有效技术。  相似文献   

3.
阿特拉津(atrazine)是一类普遍存在于环境中且难降解的污染物.本文探究了黄孢原毛平革菌(Phanerochaete chrysosporium)厚垣孢子对阿特拉津降解的最佳条件,包括温度、摇床转速、初始培养基pH及接种量.并在大田土壤盆栽实验中,研究P.chrysosporium厚垣孢子和土壤土著微生物对土壤中阿特拉津的降解情况.结果表明:P.chrysosporium厚垣孢子可以有效去除阿特拉津,在33℃、转速为180r·min~(-1)、pH值为7.0、接种量是4g·L~(-1)时,去除效果最好,去除率达90.77%.土壤盆栽实验结果表明:施用P.chrysosporium厚垣孢子28d后,非灭菌土壤中阿特拉津去除率为97.8%,其中P.chrysosporium的降解贡献最为突出,去除能力为59.3%.而土著土壤微生物的去除率仅为20.7%,表明P.chrysosporium厚垣孢子对AT降解效果明显.  相似文献   

4.
以Geobacter sulfurreducens为产电菌构建双室微生物燃料电池(MFC)。产电菌液分别在0、100、200mT的垂直磁场下动态处理1h,然后接种到MFC1、MFC2和MFC3中,研究动态磁场处理对MFC产电性能的影响。实验结果表明:动态磁场处理使产电菌反应器的启动时间延长、稳定电压降低、表观内阻增大,MFC1、MFC2和MFC3的表观内阻依次为329、507、353Ω;通过电化学阻抗谱测试可知,相比对照组MFC活化内阻,经磁场处理的产电菌MFC全电池的活化内阻变大,其中MFC1、MFC2和MFC3的活化内阻依次为12.34、28.29、16.87Ω;循环伏安测试发现经过动态磁场处理的产电菌其电化学活性降低。  相似文献   

5.
为了探明老化前后微塑料对土壤中阿特拉津消减的影响,选取了新制和老化聚乙烯(PE和APE)微塑料,对其性质进行了表征;研究了它们对阿特拉津的吸附行为;考察了有无蚯蚓情况下土壤和孔隙水中阿特拉津浓度以及菌群结构对微塑料添加(0.2%和2%,质量比)的响应.在此基础上,探究了这两种微塑料对土壤中阿特拉津消减的影响与机制.结果表明:(1)这两种微塑料对阿特拉津的吸附等温线符合Freundlich模型(R2=0.96~0.97);APE对阿特拉津的吸附能力(lgKf=1.29)略高于PE(lgKf=1.27),与老化前后PE表面极性的变化有关;(2)蚯蚓是影响土壤菌群结构的主要因素,而且蚯蚓存在时微塑料对菌群结构的影响更显著;添加蚯蚓使土壤中阿特拉津优势降解菌的相对丰度提高了8%~171%,并且优势降解菌相对丰度的增幅与微塑料老化和添加量有关;(3)这两种微塑料通过吸附抑制土壤中阿特拉津释放到孔隙水中,从而降低了阿特拉津的消减率(降幅在10%~67%之间);相反,蚯蚓通过提高土壤降解菌的相对丰度,促进了阿特拉津的消减(消减率的增幅...  相似文献   

6.
微生物燃料电池启动过程的电化学行为   总被引:1,自引:0,他引:1  
构建了以初沉池污水接种、铁氰化钾作为阴极液的典型H型无介体微生物燃料电池(MFC),考察了MFC在启动过程中的电化学行为。结果表明:在启动期间,MFC开路电压比闭路电压提前达到稳定,电池内阻的变化决定了MFC的启动过程。铁氰化钾阴极电位的变化幅度较小,阳极电位的降低幅度远大于阴极电位,启动过程电压的变化由阳极电位主导。启动中的电化学阻抗谱(EIS)分析表明,电池电荷转移内阻随着启动过程的进行呈现不断下降的趋势,反映了MFC阳极产电微生物的繁殖与驯化过程。  相似文献   

7.
通过构建一种新型的无膜单室土壤微生物燃料电池(MFC),考察了电极间距和外接电阻对土壤MFC产电性能的影响,并对阳极微生物群落结构进行分析.研究结果表明,电极间距和外接电阻对土壤MFC的输出电压和最大功率密度有显著的影响.当间距从4 cm增大到12 cm时,土壤MFC的输出电压、最大功率密度呈现出先升高后降低的趋势;阴极淹没在1 cm水层以下时,其输出电压显著降低至30 mV左右,最大功率密度为4.67 mW/m~2;外接电阻从300Ω增大到2 000Ω时,土壤MFC的输出电压从80 mV增大到了330 mV,最大功率密度从14.33mW/m~2增大到了60.40 mW/m~2.电极间距的增加或外接电阻的增大对阳极电势有显著影响,而阴极电势并没有发生差异性变化.通过高通量测序分析发现,土壤MFC和开路对照组中的阳极微生物群落结构存在显著差异.产电菌Deltaproteobacteria,Desulfuromonadales和Geobacteraceae在土壤MFC中是优势种群,其中Deltaproteobacteria的相对丰度高达24.91%,Desulfuromonadales和Geobacteraceae的相对丰度也远高于开路对照组.  相似文献   

8.
以碳布为阴阳极材料,乙酸钠为底物,MnO_2@graphene为阴极催化剂构建空气阴极单室微生物燃料电池(MFC),研究了阳极液pH、阳极底物初始COD浓度、MFC运行温度等因素对MFC输出电压和产电功率的影响﹒研究结果表明,阳极液pH对MFC产电性能影响最大,而阳极底物初始COD浓度影响最小﹒在阳极液pH为8、MFC运行温度为308 K和阳极底物初始COD浓度为800 mg/L时MFC的产电性能和污水处理最佳﹒在此条件下,MFC对污水中COD的降解率可达98.4%,输出电压和产电功率密度分别可达0.813 V和2 046.9mW/m~2,说明以MnO_2@graphene为阴极催化剂的MFC具有较好的产电性能和污水处理效能﹒  相似文献   

9.
目的研究单室微生物燃料电池(MFC)在间歇运行条件下对COD、NH+4、TP和NO-3的处理效果.方法采用石墨板为阴极,构建了单室空气阴极微生物燃料电池,以混合菌种接种,并以乙酸钠和碳酸氢钠为碳源.结果进水COD质量浓度400~900 mg/L,出水COD质量浓度维持在100 mg/L;NO-3去除率可达到90%以上.单室空气阴极微生物燃料电池可以有效降解污水中的有机物,COD去除率可以达到80%以上,但COD的质量浓度并不是影响MFC电压的主要因素.微生物燃料电池对NH+4和TP去除率都较低,同时表明阳极室中的NH+4和TP并没有参与微生物燃料电池的产电反应,NH+4和TP的质量浓度对微生物燃料电池的电能输出也没有明显影响.结论 MFC对于含NO-3的污水处理效果较好,但去除NO-3的同时对电池的产电效果影响很小.  相似文献   

10.
在三室土壤微生物燃料电池(MFC)中研究Cu质量分数和辅助剂对MFC产能和Cu迁移及去除的影响。研究结果表明:随着Cu质量分数从100.00 mg/kg增加到500.00 mg/kg,MFC的产能显著增加,最大功率密度从9.92 mW/m~2增加到59.67 mW/m~2,去除率从13.85%增加到28.21%;与盐酸(HCl)和乙酸(HAC)相比,柠檬酸(CA)的脱附效果最佳,酸可提取态Cu质量分数占总Cu质量分数的84.00%,但添加HCl的MFC具有更高的电导率和产能,同时,土壤中Cu的迁移去除率最高(40.03%);MFC中重金属主要在电迁移作用下实现了向阴极迁移,经MFC修复后,土壤中Cu质量分数从阳极到阴极呈现先上升后下降趋势;初始酸可提取态Cu质量分数与土壤pH呈显著负相关(相关系数R2=0.96),总Cu去除率与土壤电导率呈正相关(R~2=0.91);MFC更适用于修复受重金属污染较严重的土壤,且向土壤中添加HCl可以促进土壤中Cu的迁移去除。  相似文献   

11.
为了探明驯化方式对微生物燃料电池运行性能的影响,对比研究了两种不同的驯化方式。以焦化废水直接驯化和以乙酸钠、焦化废水梯度驯化下的微生物燃料电池对焦化废水的降解能力和产电能力。研究了MFC的产电性能以及COD的去除率。结果表明,MFC可以以焦化废水作为底物进行产电;并且直接驯化下的MFC的最大输出功率45.1 mW/m~2高于梯度驯化的42.9 mW/m~2;两种MFC的表观内阻差别不大,分别为直接驯化下814Ω、梯度驯化下811Ω。对COD的去除,直接驯化的MFC可以达到91%,梯度驯化也达到了83%,略低于直接驯化。由以上数据可以看出直接驯化的MFC优于梯度驯化的。  相似文献   

12.
阿特拉津降解细菌的直接检测及分离   总被引:1,自引:0,他引:1  
摘要:利用改良的 SM固体培养基,对受除草剂污染的土壤中阿特拉津降解菌进行了检测、计数及分离。研究发现,在工业污染土壤中,阿特拉津降解菌群成为微生物群落的主要组成部分,而在农业土壤中仅占次要地位。用多重PCR分析了靶向基因trzN 和 atzABC,表明含trzN-atzBC基因组合的降解菌在山东省工业及农业土壤中占主导地位。因为富集偏差的消除,直接分离方法更利于阿特拉津降解菌多样性分析的研究。  相似文献   

13.
从农药厂地下管道污泥中分离出一株阿特拉津降解菌株y-2,可以以阿特拉津为唯一氮源生长.,在加入乳酸的以阿特拉津为唯一氮源(8g/L)的基本培养基中,y-2菌能在36h内使阿特拉津降解90%以上.通过设计单因素实验和正交实验找出该菌降解阿特拉津的最佳降解条件为pH7.4,乳酸浓度6g/L,温度30℃.  相似文献   

14.
通过改变温度和阳极室搅拌速率等条件运行双室MFC,分析了电池在不同条件下的产电效果、污染去除效率和库仑效率。结果表明:随着温度的增加,MFC的产电效果、阴极液Cu2+的去除率以及阳极液COD降解率越来越差;阳极室的搅拌降低了MFC的产电性能和阴极液Cu2+的去除率,但提高了COD的降解效率。搅拌会降低MFC的库仑效率,搅拌速率越高,库仑效率越低;而温度对库仑效率的影响不大。  相似文献   

15.
采用双室微生物燃料电池(microbial fuel cell,MFC)装置,以腐熟蓝藻为阳极基质,以氧气为阴极电子受体,考察阳极基质初始pH对MFC产电性能和腐熟蓝藻降解效果的影响。研究结果表明:阳极基质为弱碱性时,可提高电子传递效率,有利于MFC产电。初始pH为8时,MFC最大输出功率密度为3.83 m W/m2,分别是初始pH为6,7和9时的1.46倍、1.18倍和1.58倍,并且pH为8时,COD的去除率达到89.8%。在稳定产电期间,由于阳极H+向阴极迁移的速率高于参与阴极还原反应的消耗速率,导致阴极室内H+积累,使pH持续下降。调控阳极基质pH、提高阴极还原反应速率,在有效降解蓝藻的同时实现电能输出,为蓝藻资源化利用提供了新的途径。  相似文献   

16.
采用溶液共混法合成银掺杂的碳纳米管溶胶,将溶胶涂敷在钛板表面,成功制备了银掺杂的碳纳米管电极(Ag-CNTs/Ti),通过扫描电镜(SEM)、X射线衍射(XRD)和能量色散X射线(EDX)对其进行表征,并应用循环伏安法研究其电化学性质.以银掺杂碳纳米管电极为阳极,石墨电极为阴极,葡萄糖溶液为阳极区基质,构建微生物燃料电池.实验表明:当温度为40℃,外阻为2 300Ω,AgNO3掺杂量为0.4g,葡萄糖质量浓度为1.257g·L-1时,微生物燃料电池的最大输出电压为811mV,表观内阻为296Ω,化学耗氧量(COD)降解率为84%.  相似文献   

17.
产脲节杆菌 DnL1-1与植物联合对阿特拉津的降解   总被引:1,自引:0,他引:1  
利用沙-土试管试验评价了产脲节杆菌Dn L1-1分别与小麦及苜蓿协同作用下对阿特拉津的降解。结果表明,菌株接种植物种子后能保护植物免受阿特拉津药害。该菌分别与小麦及苜蓿联合作用,30 d内对施加的阿特拉津的降解率分别达到99.7%~99.8%和70.2%~75.8%。试验结果表明,产脲节杆菌Dn L1-1与植物联合对阿特拉津有较强的降解能力。该菌通过拌种的方式施加到污染土壤中,是一种有前景的方法。  相似文献   

18.
在相同的基质浓度(COD=1 500 mg/L)下,分别向反应器中加入0、50、100、200、300和400 mmol/L的氯化钠(Na Cl)溶液,考察了不同Na Cl浓度对双室微生物燃料电池(MFC)的电动势、内阻、输出功率和库伦效率的影响。随着Na Cl投加量的增加,内阻显著降低,输出功率的密度相应增加,但浓度过高会导致微生物细胞失水死亡,对MFC产生破坏性影响。当离子强度的浓度为200 mmol/L时,电池产电性能最优,最大开路电压为1 138 m V,内阻为205.8Ω,最大输出功率的密度为230.35 m W/m2,COD去除效率达到90.35%,库伦效率达到30.89%。  相似文献   

19.
用富集培养法,从农药厂的工业废水中分离到降解除草剂阿特拉津的SG1菌株,经16S rRNA基因序列分析,该菌株被鉴定为产碱杆菌(Alcalegenes sp.).Alcalegenes sp.SG1能以葡萄搪、果糖、蔗糖、麦芽糖、丙酮酸钠或柠檬酸钠为碳源,以阿特拉津为唯一氮源生长,将阿特拉津完全矿化.PCR分析表明,SG1菌株含有阿特拉津降解基因atzA、atzB、atzC和trzD.生物降解实验表明,与模式菌株Pseudomonas sp.ADP不同,额外加入氮源NH4Cl或KNO3,并不影响SG1菌株对阿特拉津的降解,30℃震荡培养16 h后阿特拉津降解率在98%以上,这一特性使其成为应用于阿特拉津污染土壤生物修复的优良候选菌株.  相似文献   

20.
除草剂阿特拉津生物降解研究进展   总被引:1,自引:0,他引:1  
阿特拉津是一种常见的三嗪苯类除草剂,因其具有除草效率高、价格低廉等优点,在全世界大面积且长时间使用,已对地下水、土壤、地表水等环境造成污染,对人类健康产生威胁。文章综述了有关阿特拉津危害和降解方式的研究,阐述了利用植物、藻类、细菌以及真菌修复阿特拉津污染的最新研究进展,为阿特拉津的降解研究提供了依据和方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号