首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
地域化是降低成本、推广应用高延性水泥基复合材料(ECC)最有效的一种方法。本文研究了新疆地区风积沙、粉煤灰和硅粉3种材料对ECC流动度和抗压、抗折强度的影响,并通过ASTM C1018标准、单轴拉伸性能和SEM微观形貌分析3种材料对ECC弯曲韧性、延性的影响规律及机理。结果表明:增大粉煤灰掺量可以提高风积沙ECC的韧性和延性,当掺量为3.50时峰值应变可达到3.41%,风积沙掺量为2.25时抗折强度最高可达18.52 MPa;添加硅粉可进一步提高抗压强度,掺量为0.60时最大抗压强度达47.00 MPa。本文研究结果可为深入研究风积沙ECC提供一定的数据参考。  相似文献   

2.
为了研究Ti O2对高延性水泥基复合材料性能的影响,采用纳米Ti O2制备具有光催化性能的PVA纤维增强水泥基复合材料,综合测试并分析了复合材料的强度、韧性和光催化性能,并结合SEM对试件进行微观扫描分析。研究结果表明,掺入Ti O2后复合材料的抗压强度无明显变化,但抗折强度随Ti O2掺量的增加先增大后减小;当Ti O2的掺量为9%时,试件7 d和28 d抗折强度均达到最大值,荷载-挠度曲线塑性变形阶段曲线平缓,韧性指标I5、I10值最大,韧性最好;试件催化降解NOx的效率随Ti O2掺量的增大呈先增大后减小,Ti O2的掺量为6%时光催化降解率最大;当Ti O2掺量继续增大时,因其分散性变差而使光催化性能降低。  相似文献   

3.
本文围绕高延性水泥基复合材料的抗渗性能开展研究,对正交试验得到的最优组进行能量演化分析,采用电镜扫描(SEM)技术分析最优组的微观结构,利用X射线衍射(XRD)分析各试验组的水化产物。试验结果表明:硅灰掺量对提高ECC的抗渗性能有显著影响,ECC的能量在峰值应力点后发生快速耗散,基体发生破坏,最优组中钙矾石(AFt)和水化硅酸钙(C-S-H)搭接形成了稳定的空间结构,同时膨胀剂进一步促进AFt的生成,有助于填补空隙。  相似文献   

4.
针对车辆减速在生态高延性水泥基复合材料桥面无缝连接板内引起的剪应力问题,设计了冻融-碳化交替作用下生态高延性水泥基复合材料的剪切性能试验.首先研究生态高延性水泥基复合材料试块的碳化前沿,然后研究试块的剪切性能.结果表明:随着交替次数的增加,试块的碳化前沿逐渐增加;随着交替次数的增加,试块应力-应变上升段曲线逐渐平缓,弹性模量损伤因子逐渐增加,而剪切应变能损伤因子在交替次数1~3次后增加,在5~15次后降低.因此,在桥面连接板设计中可采用经历15次交替作用后试块的剪切应力-应变曲线.  相似文献   

5.
为了研究骨料类型及纤维对高延性水泥基复合材料(HDCC)性能的影响,分别采用普通河砂和金刚砂作骨料,添加聚乙烯醇(PVA)纤维,或PVA与微细镀铜钢混杂纤维,制备了4组HDCC,试验研究了HDCC的抗折与抗压强度、弯曲韧性、单轴拉伸性能、抗冲磨性能,并采用扫描电镜观察了HDCC拉伸破坏后PVA纤维的微观形貌.结果表明:骨料对HDCC抗折强度影响较为明显,而对抗压强度、弯曲韧性和抗冲磨性能影响不显著;微细钢纤维对HDCC抗折、抗压强度、弯曲韧性和抗冲磨性能的增强效果比较明显;在不同的HDCC体系中,微细钢纤维对延性影响的规律略有差异,以天然河砂为骨料时,掺加微细钢纤维会降低HDCC的延性,以金刚砂为骨料时,掺加微细钢纤维则会提高HDCC的延性;金刚砂提高了HDCC的抗拉强度,但显著降低了延性.  相似文献   

6.
研究了无配筋条件下超高性能钢纤维水泥基复合材料(UHPFRCC)与高延性水泥基复合材料(HDCC)复合梁试件的弯曲变形性能.通过纯剪切强度测试,比较了界面处理工艺对界面粘结性能的影响.通过弯拉实验测试了复合梁试件在弯曲载荷下的变形性能,并与纯UHPFRCC梁的变形能力进行对比.结果表明,不同的界面处理工艺决定了界面粘结性能.最佳的界面处理方法能使界面粘结强度高于HDCC基体本身强度,界面过渡区基体致密,没有明显的微观缺陷.UHPFRCC-HDCC复合梁在弯拉荷载下,极限抗弯强度达到13.4 M Pa,跨中最大挠度为2.8mm.HDCC能通过自身的多缝开裂增加裂缝数目来改善变形能力.与UHPFRCC梁相比,UHPFRCC-HDCC复合梁弯曲时,塑形变形明显,并具有更大的弯曲挠度.  相似文献   

7.
为了研究高延性水泥基复合材料(HDCC)流变特性对短切聚乙烯醇(PVA)纤维分散性的影响规律,采用流变仪和荧光显微分析技术分别对HDCC浆体的流变特性以及短切PVA纤维在HDCC基体中的分散性进行研究.实验结果表明:HDCC浆体流变行为符合赫切尔-巴尔克模型,浆体流动后,应变梯度随应力增量按幂指数增长;当HDCC浆体塑性黏度为1.3~7.3 Pa·s时,即使短切PVA纤维的体积掺量为1.5%~2.0%,纤维在HDCC基体中的分散系数均大于0.92,实现了均匀分散.合理调整配比中粉煤灰、减水剂和功能性组分的掺量,可调控HDCC浆体塑性黏度并实现短切PVA纤维的均匀分散,为HDCC高延性的理论设计提供实验支持.  相似文献   

8.
探索采用铁尾矿粉取代粉煤灰作为矿物掺合料制备高延性纤维增强水泥基复合材料( ECC)的可行性,重点研究铁尾矿粉掺量对ECC的拉伸特性和抗压强度的影响,并比较所研发的新型铁尾矿粉ECC与传统粉煤灰ECC的宏观力学性能.研究发现,采用铁尾矿粉作为矿物掺合料制备高延性纤维增强水泥基复合材料是可行的. 在同等矿物掺合料掺量下,铁尾矿粉ECC的强度性能低于粉煤灰ECC,但表现出更强的拉伸延性. 在所研制的铁尾矿粉ECC中,当铁尾矿粉与水泥质量比为1. 2~2. 2时,ECC的28 d抗压强度为36. 7~54. 2 MPa,满足一般混凝土结构对抗压强度的要求. 此时,ECC的28 d极限拉伸应变为3. 4% ~4. 3%,铁尾矿的总用量占固体基体原材料总质量的66. 6% ~77. 0%.  相似文献   

9.
高延性水泥基材料(engineered cementitious composites, ECC)是为克服水泥基材料的脆性、突破其应变软化属性而发展起来的新型纤维增强复合材料,该材料的广泛应用决定其暴露高温(火灾)的风险不可忽视.本文围绕ECC高温抗压和抗拉力学性能研究进行综述,深入分析了ECC高温力学性能的关键影响因素,讨论了相关研究工作中存在的若干问题,并在此基础上针对ECC材料高温力学性能的优化设计研究提出建议.  相似文献   

10.
采用变截面霍普金森杆(SHPB)对不同配比的钢/PVA纤维混合增强水泥基复合材料(HFRCC)进行了不同应变率的冲击压缩实验,并对其抗压强度、峰值应变和韧性等动力性能进行对比分析.结果表明:HFRCC材料表现出应变率敏感性;随着PVA纤维的增加,材料的变形性能更好,而钢纤维的加入则提高了其动态抗压强度;PVA纤维含量的增加能降低材料的动态强度增长因子;在低应变率下和峰值应力之前,纤维间的相对含量对HFRCC的韧性影响不大,在高应变率下,钢纤维能有效提高其韧性.  相似文献   

11.
采用大掺量矿物掺合料(35%粉煤灰+10%硅灰+10%偏高岭土)等量取代水泥,与最大粒径2.36 mm的天然砂和2种不同形状(端勾型与平直型)的超细镀铜钢纤维,制备出超高性能水泥基复合材料(UHPCC).通过分离式霍普金森压杆装置对UHPCC进行高速冲击压缩实验,研究了应变率、冲击次数、纤维种类及掺量对该材料抗多次冲击...  相似文献   

12.
超高性能水泥基复合材料的动态力学性能研究   总被引:1,自引:0,他引:1  
采用60%的超细工业废渣取代水泥,采用粒径为2.5~3.0 mm的天然砂取代粒径为600 μm的磨细石英砂,并掺加了Dmax为5 、10和15 mm的粗集料,制备出抗压强度达200 MPa的超高性能水泥基复合材料(UHPCC);并采用分离式霍普金森压杆装置对不同纤维掺量的UHPSFRCC材料进行了一次和多次冲击压缩实验.对材料的多次冲击压缩标准化强度进行了定义,揭示出了应变率、冲击次数、冲击方式、纤维掺量影响材料抗冲击性能的规律.试验表明,UHPSFRCC抗冲击的能力随纤维掺量的增加不断提高;动态性能因掺入用作粗集料的玄武岩碎石而得到了相应的提升;动态强度随应变率的提高相应地增长;损伤程度随冲击次数的增加不断地加剧、标准化强度则相应地下降.承受多次冲击的UHPSFRCC试件随冲击次数的增加其冲击下峰值应力的下降速度也将增大.  相似文献   

13.
生态高延性混凝土(ecological high ductility concrete, Eco-HDC)具有优异的抗拉性能,可用来浇筑桥面无缝连接板。为避免Eco-HDC收缩引发的开裂问题,采用BFRP筋作为抗裂筋。为结构设计优选BFRP筋保护层厚度,从BFRP筋对Eco-HDC收缩的影响角度,研究保护层厚度对试件干燥收缩的影响,对比分析配BFRP筋与不配筋对Eco-HDC收缩性能的影响。试验结果表明:随着龄期的增加,素Eco-HDC和BFRP筋增强Eco-HDC的干燥收缩均逐渐增加,BFRP筋压应变呈增加趋势,养护1~7 d时增加趋势较为明显,之后增加趋势逐渐变缓;随着保护层厚度的减小,BFRP筋增强Eco-HDC的收缩逐渐增加,BFRP筋压应变也逐渐增大,BFRP筋的约束效果更加明显,但经历45 d后BFRP筋压应变数值差别不大。在桥面无缝连接板施工养护时应注意早龄期7 d内保湿以减少收缩;在结构设计中,优选BFRP筋保护层厚度为25 mm.  相似文献   

14.
石松涛  徐飞  李琦 《科学技术与工程》2023,23(11):4745-4754
为研究冻融循环作用下聚乙烯纤维增强复合基体材料(polyethylene fiber-engineered cementitious composite, PE-ECC)与不同纤维增强复合材料(fiber reinforced polymer/plastFRP)的力学性能及微观结构演化规律,对PE-ECC、PE-ECC-BFRP和PE-ECC-CFRP三种试件进行快速冻融试验。研究试件在不同冻融循环次数下的质量损失率、相对动弹性模量、三点抗弯试验及扫描电镜。试验结果表明:在冻循环150次PE-ECC和普通砂浆混凝土的质量损失率分别为1.67%和13.5%,PE纤维的阻裂作用可以很好约束水泥砂浆的剥落;在PE-ECC水泥纤维基体材料中添加CFRP网格布或BFRP网格布可以提高试件的强度和降低水泥纤维基体材料内部微裂缝的扩展,提高了水泥纤维基体材料的抗冻性能;PE-ECC-BFRP试件和PE-ECC-CFRP试件比PE-ECC试件的最大承载能力分别增大了22.5%、67.3%,最大挠度分别增大了28.2%、76.7%,在冻融循环作用下FRP网格布可以提高PE-ECC的抗弯能力和最大挠曲能力...  相似文献   

15.
水泥基材料抗拉强度低、韧性差是其易开裂的主要原因之一。高模量PVA纤维可增强基材韧性,使其呈现准应变硬化和多缝开裂特征,改善结构耐久性。通过四点弯曲试验得出了不同加载速率和配比SHCC的力-变形曲线并用CON-SOFT软件计算断裂能。结果表明,硅灰使材料抗压强度有所提高,但最大抗弯承载力和变形下降,断裂能降低。甲基纤维素使SHCC脆性增大。加载速率降低,材料表现出更好的应变硬化性能,微裂缝条数增多。SHCC砂子最大粒径高于ECC,虽达不到后者的最大拉应变,但可降低成本并满足工程需要。韧性性能研究给出了基于耐久性能优化设计和评定SHCC的实用方法。  相似文献   

16.
水泥基材料抗拉强度低、韧性差是其易开裂的主要原因之一。高模量PVA纤维可增强基材韧性,使其呈现准应变硬化和多缝开裂特征,改善结构耐久性。通过四点弯曲试验得出了不同加载速率和配比SHCC的力-变形曲线并用CONSOFT软件计算断裂能。结果表明,硅灰使材料抗压强度有所提高,但最大抗弯承载力和变形下降,断裂能降低。甲基纤维素使SHCC脆性增大。加载速率降低,材料表现出更好的应变硬化性能,微裂缝条数增多。SHCC砂子最大粒径高于ECC,虽达不到后者的最大拉应变,但可降低成本并满足工程需要。韧性性能研究给出了基于耐久性能优化设计和评定SHCC的实用方法。  相似文献   

17.
基于三点弯曲试验,研究水胶比、再生微粉取代率、纤维种类对纤维再生微粉水泥基复合材料(FRPCC)断裂性能的影响.根据双K断裂参数分析各因素对FRPCC的增韧效果,并结合微观形貌分析各因素对FRPCC韧性的改善机制.结果表明:水胶比增大使纤维再生微粉水泥基复合材料失稳韧度先升高后降低;断裂韧度随着再生微粉取代率提升呈现先增后减的趋势;单掺玄武岩纤维(BF)会使FRPCC脆性增加,聚乙烯醇纤维(PVA纤维)占比增大能够明显提升FRPCC的断裂韧度;当水胶比为0.28、再生微粉取代率为45%、复掺0.2%玄武岩纤维和1.7%PVA纤维时,微观结构紧密,断裂韧度最优.  相似文献   

18.
建立了1-3型水泥基压电复合材料的有限元模型,并对其进行了静力分析、模态分析和瞬态动力学分析。得到了水泥基压电复合材料的内部应力应变分布、水泥基体对复合材料压电性能的影响、复合材料的厚度振动模态和在动态载荷下的响应情况。发现水泥基压电复合材料产生的驱动应变和节点应力都集中在压电陶瓷柱上,高泊松比和低弹性模量的水泥基体能够增加复合材料的压电性能;低频下水泥基压电复合材料的振动特性与压电陶瓷相同,且对外部的动态激励有着良好的线性响应。  相似文献   

19.
在聚乙烯纤维体积分数固定为1%的情况下,分别对掺入体积分数为0、0.3%、0.6%和0.9%的钢纤维的试件进行直接拉伸试验,研究钢纤维掺量对高韧性水泥基复合材料直接拉伸性能的影响.结果表明,钢纤维的掺入可以有效增大试件的初裂拉力和极限拉力,与不掺钢纤维的试件相比,钢纤维体积分数为0.3%、0.6%、0.9%的试件的初裂...  相似文献   

20.
碳纤维-水泥基导电复合材料导电性能的研究   总被引:6,自引:0,他引:6  
研究先掺法、同掺法和后掺法三种搅拌工艺、浇铸成型和挤出成型两种成型工艺、增塑剂 (分散剂 )以及碳纤维掺量对水泥基导电复合材料导电性能的影响。结果表明 ,较适宜的搅拌工艺为同掺法 ;增塑剂的加入使试样的电阻率下降幅度减小 ;目前振实成型制备的试样电性能优于挤出成型制备的试样 ,而要想通过挤出成型制备电性能较好的试样 ,也必须选择适宜增塑剂 ,并尽量减小用量 ;掺 0~ 0 .6 %碳纤维的水泥基材料 ,其电阻率由 1.1× 10 5Ω·cm下降到 3.2 7× 10 3Ω·cm ,可以用作电磁屏蔽材料、防静电材料和电热材料  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号