首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
移动机器人路径规划是机器人学的一个重要研究领域,蚁群算法是一种模拟蚂蚁群体觅食行为的仿生优化算法。结合机器人路径规划的特点,将确定性选择和蚁群算法的随机性选择相结合进行节点转移,每次循环后只对较优蚂蚁路径进行信息素更新,提高了算法收敛的速度;在寻找路径过程中蚂蚁无后继转移节点时,采用蚂蚁回退策略,增强了算法在复杂障碍物环境中寻找路径的健壮性。仿真试验表明,该算法能在障碍物较复杂的情况下迅速规划出较优的全局路径。  相似文献   

2.
针对蚁群算法应用于机器人路径规划存在的全局搜索能力差、初始化信息素少、收敛性差、寻优能力弱等问题,提出了一种多因素改进的蚁群算法。通过改变初始化信息素浓度分配、改变启发式函数、采取蚂蚁回退策略、引入蚂蚁优化排序等方法对蚁群算法进行优化。利用MATLAB软件对改进蚁群算法进行仿真和六足机器人实验。结果表明:改进后的算法在路径更优,迭代次数更少,提高了算法的鲁棒性和寻优能力。  相似文献   

3.
针对传统蚁群算法在移动机器人最短路径规划方面存在的不足,如算法前期盲目性搜索、收敛速度慢、消耗时间长及转弯次数多,提出了一种改进的蚁群算法。该算法根据正态分布模型,将栅格环境划分不同区域,进行信息素差异化处理,减少蚂蚁初期搜索时间;同时基于A*搜索算法的估价函数思想改进启发函数,引入自适应启发信息因子,增强其目标导向性,提高算法收敛速度,平衡算法全局搜索能力。仿真结果表明,改进的蚁群算法能够规划出收敛速度较快、转弯次数较少以及平滑度更高的路径。  相似文献   

4.
针对蚁群算法中收敛速度和局部最优的矛盾,提出一种适用于静态环境的基于改进蚁群算法的移动机器人路径规划方法.在环境建模方面,利用机器人起点和终点的位置建立环境的可视图.改进的蚁群算法将环境中局部的路径信息加入到信息素的初始化和路径选择概率中,提高了算法收敛速度的同时尽可能地避免算法早熟.当算法陷入停滞时,引入交叉操作并调整α,β和ρ的值,增加了算法的逃逸能力.仿真结果证明了所提方法提高了最优路径的搜索效率,整体性能优于标准蚁群算法.  相似文献   

5.
针对蚁群算法应用于移动机器人路径规划时存在易于陷入局部最优解、收敛速度慢的问题,提出了一种适用于静态障碍环境下基于改进蚁群算法的移动机器人路径规划方法。该方法改进了节点间的状态转移规则,增加了得到最优路径的概率;自适应调整启发函数,提高了算法的搜索效率;基于狼群法则对信息素进行更新,有效避免了算法陷入局部最优解;动态调整了衰减系数,在后期增加了蚂蚁对最优路径的选择概率,加快了算法的收敛速度。仿真实验表明,与其他算法在相同环境下比较,该改进算法在路径规划结果相同的情况下具有较快的收敛速度;且改进算法在不同复杂程度环境中均得到了最优路径,也表明了该算法的有效性和可靠性。该算法具有良好的寻优能力,可以适用于不同复杂环境中的移动机器人路径规划。  相似文献   

6.
三维路径规划是移动机器人研究领域的核心内容之一.传统的蚁群算法应用于三维路径规划时,存在收敛速度慢,容易陷入局部最优解等问题.针对这些问题,论文对路径节点的选取方法、信息素的更新方法、启发函数的设计进行了改进,从而避免了算法陷入局部最优解,加快了算法的收敛速度.仿真实验表明改进算法在不同复杂程度的环境中都可以得到最优路径,且路径规划结果较好,这表明了算法有良好的寻优能力.  相似文献   

7.
针对动态环境下的移动机器人最优路径问题,利用栅格法建模,提出1种改进蚁群算法。通过调整信息素启发因子和期望启发因子,自适应改变挥发系数。在路径规划时,提出相应的动态路径规划避障策略,使机器人在避障的同时得到最优或次优路径。实验结果表明,当机器人陷入凹型障碍并且在复杂环境搜索效率低的情况下,该文算法经过25代收敛找到最短路径;改进算法比基本蚁群算法进化代数减少近50代,同时能有效避免移动机器人和动态障碍物碰撞,并且获得15.656的无碰路径。  相似文献   

8.
路径规划是机器人室内导航需要攻克的关键技术之一。蚁群算法可以有效实现机器人在室内智能移动的路径规划的目标,但是也存在着停滞和收敛精度低等各种问题,针对这些问题,提出了一种改进蚁群算法可以使机器人在室内智能的完成路径规划的任务,融合了确定性选择与随机性选择策略的优点,在路径转移概率中引入一个启发性的因子,可以使状态转移概率动态进行调整,从而使算法避免了陷入停滞,并对蚁群算法中的信息素更新时的策略加以改进,引入了鸟群算法中的觅食行为。算法通过仿真验证,结果表明了该算法具有较好的室内路径规划能力,实现了路径寻优和花销最短时间效果。  相似文献   

9.
针对在结构化栅格工作环境下,基于蚁群算法的路径规划存在停滞和收敛速度慢的问题,提出了一种基于改进蚁群算法的二维码移动机器人路径规划方法.通过限制蚂蚁的搜索方向,即将机器人置于结构化栅格工作环境下,使其只能在水平和垂直方向上移动,进而提高算法的搜索效率.引入自适应期望函数和启发因子,动态调整状态转移概率,避免算法陷入停滞状态,提高算法的收敛速度.针对机器人在转弯过程中耗费时间较长的问题,通过引入转弯影响因子得到扩展路径长度,进而根据扩展路径长度选取最优路径.实验结果表明,提出的方法可以为二维码移动机器人规划出最优路径.  相似文献   

10.
基于改进粒子群算法的移动机器人全局路径规划   总被引:1,自引:0,他引:1  
提出了一种新的移动机器人全局路径规划算法.该算法首先建立机器人工作空间障碍物顶点模型,根据障碍物顶点信息构造一个移动机器人从始点到终点的无碰距离函数,然后用改进的粒子群算法对此路径进行优化, 得到全局最优路径.  相似文献   

11.
移动机器人路径规划的一种改进蚁群算法   总被引:4,自引:0,他引:4  
提出了一种复杂静态环境下的移动机器人避碰路径规划的改进蚁群算法。基于栅格法的工作空间模型,模拟蚂蚁觅食行为,并针对移动机器人的路径规划的需要,将一些特殊功能赋予常规的蚁群算法。为了避免移动机器人的路径死锁,在路径搜索过程中,当蚂蚁探索到一个死角时,建立了相应的死角表,同时用惩罚函数来更新轨迹强度。仿真研究表明:该算法能明显改善路径规划性能,并且算法简单有效。  相似文献   

12.
改进蚁群优化算法求解移动机器人路径规划问题   总被引:4,自引:0,他引:4  
针对蚂蚁双向并行搜索策略会丢失蚂蚁间的部分可行路径甚至最优路径的问题,该文采用栅格法建立移动机器人环境模型,提出了根据信息素判断蚂蚁是否相遇的新的蚂蚁相遇判别法。为避免算法陷入局部最优,提出了综合考虑多种因素的新的路径选择策略和全局信息素更新策略。二维环境下的仿真研究表明,只要路径客观存在,算法就能快速地规划出相应的安全路径。  相似文献   

13.
将改进的蚁群算法与路径几何优化相结合,用于解决移动机器人的全局路径规划问题.算法结合机器人的越障性能对移动机器人的环境空间进行建模.通过设置初始信息素加快蚂蚁的搜索速度,同时设置自适应信息素挥发机制,解决特定地图中初始信息素的干扰问题;设置自适应路径长度,筛选规划路径的优劣;提出由路径优劣程度决定的信息素散播策略,并从几何原理出发,对规划路径进行优化处理,加快最优解的收敛速度.仿真结果验证了该算法的有效性和普遍应用性,在随机给定的环境地图中,该算法能够迅速规划出最优路径.  相似文献   

14.
为了解决在火灾救援中考虑多因素的移动机器人最优路径规划问题,提出一种基于改进蚁群算法的救援路径规划方法.通过改进全局信息素更新策略,考虑影响移动机器人到达待救援点时间的路径长度、转弯次数、坡度大小等主要因素,并根据多因素综合指标来分配各路径上的信息素量,指引蚂蚁走向最优路径.通过仿真算例并与同类方法对比,结果表明,该方...  相似文献   

15.
通过栅格法建立栅格地图作为机器人路径规划的工作环境,采用蚁群算法作为机器人路径搜索的规则.将所有机器人放置于初始位置。经过NC次无碰撞迭代运动找到最优路径.到达目标位置.为防止机器人在路径搜索过程中没有达到最大迭代次数时路径大小已不发生变化而陷入局部最优。可通过对各路径上的信息素进行增减来使机器人路径搜索跳出当前值继续搜索.直到迭代完毕,获得最优路径.  相似文献   

16.
基于TSP问题,提出了一种基于粒子群-蚁群算法相互融合的综合优化算法对移动机器人路径规划问题进行研究。通过粒子群算法对全局路径实施粗略搜索,获得部分次优解,在获得次优解的路径上进行信息素分布,再采用蚁群算法进行精确搜索,得到路径规划的最优解。实验结果表明:粒子群-蚁群融合优化算法在路径寻优上优于蚁群算法及粒子群算法。  相似文献   

17.
唐文娟 《科学技术与工程》2012,12(29):7598-7601,7606
针对当前机器人路径规划算法存在局部最优问题,提出了一种改进的移动机器人路径规划算法。该算法采用改进的人工势场算法产生初始化种群,改进的遗传算法引入了新的适应性函数和"翻转变异"算子、进行全局路径优化。适应性函数包括路径点的适应度和路径的适应度,提高了适应性函数的评价性能。"翻转变异"使障碍物路径变为自由路径,使移动机器人顺利绕过障碍物。克服了传统遗传算法的早熟收敛问题,提高了遗传算法的效率。实验结果表明该算法在移动机器人路径规划中的可行性和有效性。  相似文献   

18.
基于改进蚁群算法的无人机航迹规划   总被引:2,自引:0,他引:2  
针对无人机在指定地点执行侦察、 巡逻或攻击等任务, 将无人机执行任务的航迹代价模型转化为旅行商问题, 采用改进蚁群算法实现航迹规划。通过引入去交叉禁忌搜索策略, 对基本蚁群算法进行改进, 以解决在收敛后期易陷入局部最优的问题。同时, 利用数值仿真对所研究的基于改进蚁群算法的无人机航迹规划算法进行验证。仿真结果表明, 该算法能提高了无人机航迹优化能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号