共查询到20条相似文献,搜索用时 0 毫秒
1.
Casadesus G Atwood CS Zhu X Hartzler AW Webber KM Perry G Bowen RL Smith MA 《Cellular and molecular life sciences : CMLS》2005,62(3):293-298
Differences in the prevalence and age of onset of Alzheimer disease (AD) in men and women, and observations that hormone replacement therapy (HRT) may prevent the development of AD, caused many to hypothesize that estrogen deficiency contributes to AD. However, recent trials using estrogen failed to show any benefit in preventing or alleviating the disease. To address this and other inconsistencies in the estrogen hypothesis, we suspect that another hormone of the hypothalamic-pituitary-gonadal axis, luteinizing hormone (LH), as a major factor in AD pathogenesis. Individuals with AD have elevated levels of LH when compared with controls, and both LH and its receptor are present in increased quantities in brain regions susceptible to degeneration in AD. LH is also known to be mitogenic, and could therefore initiate the cell cycle abnormalities known to be present in AD-affected neurons. In cell culture, LH increases amyloidogenic processing of amyloid- protein precursor, and in animal models of AD, pharmacologic suppression of LH and FSH reduces plaque formation. Given the evidence supporting a pathogenic role for LH in AD, a trial of leuprolide acetate, which suppresses LH release, has been initiated in patients. 相似文献
2.
Two classes of ovarian steroids, estrogens and progestins, are potent in protecting neurons against acute toxic events as well as chronic neurodegeneration. Herein we review the evidence for neuroprotection by both classes of steroids, provide plausible mechanisms for these potent neuroprotective activities and indicate the need for further clinical trials of both estrogens and progestins in protection against acute and chronic conditions that cause neuronal death. Estrogens at concentrations ranging from physiological to pharmacological are neuroprotective in a variety of in vitro and in vivo models of cerebral ischemia and brain trauma as well as in reducing key neuropathologies of Alzheimers disease. While the mechanisms of this potent neuroprotection are currently unresolved, a mitochondrial mechanism is involved. Progestins have been recently shown to activate many of the signaling pathways used by estrogens to neuroprotect, and progestins have been shown to protect against neuronal loss in vitro and in vivo in a variety of models of acute insult. Collectively, results of these animal and tissue culture models suggest that the loss of both estrogens and progestins at the menopause makes the brain more vulnerable to acute insults and chronic neurodegenerative diseases. Further clinical assessment of appropriate regimens of estrogens, progestins and their combination are supported by these data. 相似文献
3.
4.
The relationship between hormones and Alzheimers disease (AD) has been intensely researched. While the majority of this work has focused on the sex steroids, estrogens, and more recently androgens, a serendipitous patient encounter led one of us (R.L.B.) to question whether other hormones of the hypothalamic-pituitary-gonadal axis might play a role in the pathogenesis of AD. The age-related decline in reproductive function results in a dramatic decrease in serum estrogen and testosterone concentrations and an equally dramatic compensatory increase in serum gonadotropin concentrations. Indeed, there is growing evidence that the gonadotropin luteinizing hormone, which regulates serum estrogen and testosterone concentrations, is an important causative factor in the development of AD. This review provides information supporting the gonadotropin hypothesis. We put forth a novel mechanism of how changes in serum luteinizing hormone concentrations could contribute to the pathogenesis of AD and discusses potential therapeutic anti-gonadotropin compounds. 相似文献
5.
Receptors for hormones of the hypothalamic-pituitary-gonadal (HPG) axis that regulate reproductive function are expressed throughout the brain, and in particular the limbic system. The most studied of these hormones, the sex steroids, contain receptors throughout the brain, and numerous estrogenic, progestrogenic and androgenic effects have been reported in the brain related to development, maintenance and cognitive functions. Although less studied, receptors for gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH) and activins also are found throughout the limbic system on a number of cell types, and they too transduce signals from circulating hormones as demonstrated by their multiple effects on the growth, development, maintenance and function of the brain. This review highlights the point that because of the feedback loops within the HPG axis, it is difficult to ascribe structural and functional changes during development, adulthood and senescence to a single HPG hormone, since a change in the concentration of any hormone in the axis will modulate hormone concentrations and/or receptor expression patterns for all other members of the axis. The most studied of these situations is the change in serum and neuronal concentrations of HPG hormones associated with menopause/andropause. Dysregulation of the HPG axis at this time results in increases in the concentrations of serum GnRH, gonadotropins and activins, decreases in the serum concentrations of sex steroid and inhibin, and increases in GnRH and LH receptor expression. Such changes would result in significantly altered neuronal signaling, with the final result being that there is i.e. increased neuronal GnRH, LH and activin signaling, but decreased sex steroid signaling. Therefore, loss of cognitive function during senescence, typically ascribed to sex steroids, may also result from increased signaling via GnRH, LH or activin receptors. Future studies will be required to differentiate which hormones of the HPG axis regulate/maintain cognitive function. This introductory review highlights the importance of the identification of HPG hormone neuronal receptors and the potential of serum HPG hormones to transduce signals to regulate brain structure and function during development and adult life. 相似文献
6.
Bates KA Harvey AR Carruthers M Martins RN 《Cellular and molecular life sciences : CMLS》2005,62(3):281-292
The relationship between menopause and cognitive decline has been the subject of intense research since a number of studies have shown that hormone replacement therapy could reduce the risk of developing Alzheimers disease in women. In contrast, research into andropause has only recently begun. Furthermore, evidence now suggests that steroidogenesis is not restricted to the gonads and adrenals, and that the brain is capable of producing its own steroid hormones, including testosterone and estrogen. Sex hormones have been demonstrated to be of critical importance in the embryonic development of the central nervous system (CNS); however, we are only just beginning to understand the role that these hormones may play in the normal functioning and repair of the adult mammalian CNS. This review will summarize current research into the role of androgens and andropause on cognition and the possible mechanisms of action of androgens, with particular reference to Alzheimers disease. 相似文献
7.
8.
9.
Yasmina?Manso Javier?Carrasco Gemma?Comes Gabriele?Meloni Paul?A.?Adlard Ashley?I.?Bush Milan?Va?ák Juan?Hidalgo
Among the dementias, Alzheimer’s disease (AD) is the most commonly diagnosed, but there are still no effective drugs available for its treatment. It has been suggested that metallothionein-3 (MT-3) could be somehow involved in the etiology of AD, and in fact very promising results have been found in in vitro studies, but the role of MT-3 in vivo needs further analysis. In this study, we analyzed the role of MT-3 in a mouse model of AD, Tg2576 mice, which overexpress human Amyloid Precursor Protein (hAPP) with the Swedish mutation. MT-3 deficiency partially rescued the APP-induced mortality of females, and mildly affected APP-induced changes in behavior assessed in the hole-board and plus-maze tests in a gender-dependent manner. Amyloid plaque burden and/or hAPP expression were decreased in the cortex and hippocampus of MT-3-deficient females. Interestingly, exogenously administered Zn7MT-3 increased soluble Aβ40 and Aβ42 and amyloid plaques and gliosis, particularly in the cortex, and changed several behavioral traits (increased deambulation and exploration and decreased anxiety). These results highlight that the control of the endogenous production and/or action of MT-3 could represent a powerful therapeutic target in AD. 相似文献
10.
Leah Zuroff David Daley Keith L. Black Maya Koronyo-Hamaoui 《Cellular and molecular life sciences : CMLS》2017,74(12):2167-2201
Deficiency in cerebral amyloid β-protein (Aβ) clearance is implicated in the pathogenesis of the common late-onset forms of Alzheimer’s disease (AD). Accumulation of misfolded Aβ in the brain is believed to be a net result of imbalance between its production and removal. This in turn may trigger neuroinflammation, progressive synaptic loss, and ultimately cognitive decline. Clearance of cerebral Aβ is a complex process mediated by various systems and cell types, including vascular transport across the blood–brain barrier, glymphatic drainage, and engulfment and degradation by resident microglia and infiltrating innate immune cells. Recent studies have highlighted a new, unexpected role for peripheral monocytes and macrophages in restricting cerebral Aβ fibrils, and possibly soluble oligomers. In AD transgenic (ADtg) mice, monocyte ablation or inhibition of their migration into the brain exacerbated Aβ pathology, while blood enrichment with monocytes and their increased recruitment to plaque lesion sites greatly diminished Aβ burden. Profound neuroprotective effects in ADtg mice were further achieved through increased cerebral recruitment of myelomonocytes overexpressing Aβ-degrading enzymes. This review summarizes the literature on cellular and molecular mechanisms of cerebral Aβ clearance with an emphasis on the role of peripheral monocytes and macrophages in Aβ removal. 相似文献
11.
Marta Bolos Carlos Spuch Lara Ordoñez-Gutierrez Francisco Wandosell Isidro Ferrer Eva Carro 《Cellular and molecular life sciences : CMLS》2013,70(15):2787-2797
β-amyloid (Aβ) can promote neurogenesis, both in vitro and in vivo, by inducing neural progenitor cells to differentiate into neurons. The choroid plexus in Alzheimer’s disease (AD) is burdened with amyloid deposits and hosts neuronal progenitor cells. However, neurogenesis in this brain tissue is not firmly established. To investigate this issue further, we examined the effect of Aβ on the neuronal differentiation of choroid plexus epithelial cells in several experimental models of AD. Here we show that Aβ regulates neurogenesis in vitro in cultured choroid plexus epithelial cells as well as in vivo in the choroid plexus of APP/Ps1 mice. Treatment with oligomeric Aβ increased proliferation and differentiation of neuronal progenitor cells in cultured choroid plexus epithelial cells, but decreased survival of newly born neurons. These Aβ-induced neurogenic effects were also observed in choroid plexus of APP/PS1 mice, and detected also in autopsy tissue from AD patients. Analysis of signaling pathways revealed that pre-treating the choroid plexus epithelial cells with specific inhibitors of TyrK or MAPK diminished Aβ-induced neuronal proliferation. Taken together, our results support a role of Aβ in proliferation and differentiation in the choroid plexus epithelial cells in Alzheimer’s disease. 相似文献
12.
A. Iatrou G. Kenis B. P. F. Rutten K. Lunnon D. L. A. van den Hove 《Cellular and molecular life sciences : CMLS》2017,74(3):509-523
Even though the etiology of Alzheimer’s disease (AD) remains unknown, it is suggested that an interplay among genetic, epigenetic and environmental factors is involved. An increasing body of evidence pinpoints that dysregulation in the epigenetic machinery plays a role in AD. Recent developments in genomic technologies have allowed for high throughput interrogation of the epigenome, and epigenome-wide association studies have already identified unique epigenetic signatures for AD in the cortex. Considerable evidence suggests that early dysregulation in the brainstem, more specifically in the raphe nuclei and the locus coeruleus, accounts for the most incipient, non-cognitive symptomatology, indicating a potential causal relationship with the pathogenesis of AD. Here we review the advancements in epigenomic technologies and their application to the AD research field, particularly with relevance to the brainstem. In this respect, we propose the assessment of epigenetic signatures in the brainstem as the cornerstone of interrogating causality in AD. Understanding how epigenetic dysregulation in the brainstem contributes to AD susceptibility could be of pivotal importance for understanding the etiology of the disease and for the development of novel diagnostic and therapeutic strategies. 相似文献
13.
Apolipoprotein E (apoE) ɛ4 allele is a genetic risk factor for late-onset familial and sporadic Alzheimer’s disease (AD).
In the central nervous system, apoE is secreted mainly by astrocytes as a constituent of high-density lipoproteins. A recent
study using apoE knockout mice provided strong evidence that apoE promotes cerebral deposition of amyloid β protein (Aβ).
However, no clear explanation of the pathogenesis of apoE-induced AD has been provided. Here we discuss two possible mechanisms
by which apoE might enhance Aβ deposition. One is the intracellular pathway in which apoE is internalized by neurons and induces
lysosomal accumulation of Aβ and amyloidogenic APP (amyloid precursor protein) fragments, leading to neuronal death. The other
is the extracellular pathway in which apoE-containing lipoproteins are trapped by Aβ1–42 deposits mobilizing soluble Aβ peptides
and consequently enlarge amyloid plaques. These two mechanisms may operate at different stages of AD pathogenesis and suggest
a chaperone-like function for the apoE molecule.
Received 4 February 1999; received after revision 9 April 1999; accepted 23 April 1999 相似文献
14.
15.
E. Hubin N. A. J. van Nuland K. Broersen K. Pauwels 《Cellular and molecular life sciences : CMLS》2014,71(18):3507-3521
The aggregation and deposition of the amyloid-β peptide (Aβ) in the brain has been linked with neuronal death, which progresses in the diagnostic and pathological signs of Alzheimer’s disease (AD). The transition of an unstructured monomeric peptide into self-assembled and more structured aggregates is the crucial conversion from what appears to be a harmless polypeptide into a malignant form that causes synaptotoxicity and neuronal cell death. Despite efforts to identify the toxic form of Aβ, the development of effective treatments for AD is still limited by the highly transient and dynamic nature of interconverting forms of Aβ. The variability within the in vivo “pool” of different Aβ peptides is another complicating factor. Here we review the dynamical interplay between various components that influence the heterogeneous Aβ system, from intramolecular Aβ flexibility to intermolecular dynamics between various Aβ alloforms and external factors. The complex dynamics of Aβ contributes to the causative role of Aβ in the pathogenesis of AD. 相似文献
16.
Antero Salminen Kai Kaarniranta Anu Kauppinen 《Cellular and molecular life sciences : CMLS》2018,75(17):3099-3120
The exact cause of Alzheimer’s disease (AD) is still unknown, but the deposition of amyloid-β (Aβ) plaques and chronic inflammation indicates that immune disturbances are involved in AD pathogenesis. Recent genetic studies have revealed that many candidate genes are expressed in both microglia and myeloid cells which infiltrate into the AD brains. Invading myeloid cells controls the functions of resident microglia in pathological conditions, such as AD pathology. AD is a neurologic disease with inflammatory component where the immune system is not able to eliminate the perpetrator, while, concurrently, it should prevent neuronal injuries induced by inflammation. Recent studies have indicated that AD brains are an immunosuppressive microenvironment, e.g., microglial cells are hyporesponsive to Aβ deposits and anti-inflammatory cytokines enhance Aβ deposition. Immunosuppression is a common element in pathological disorders involving chronic inflammation. Studies on cancer-associated inflammation have demonstrated that myeloid-derived suppressor cells (MDSCs) have a crucial role in the immune escape of tumor cells. Immunosuppression is not limited to tumors, since MDSCs can be recruited into chronically inflamed tissues where inflammatory mediators enhance the proliferation and activation of MDSCs. AD brains express a range of chemokines and cytokines which could recruit and expand MDSCs in inflamed AD brains and thus generate an immunosuppressive microenvironment. Several neuroinflammatory disorders, e.g., the early phase of AD pathology, have been associated with an increase in the level of circulating MDSCs. We will elucidate the immunosuppressive armament of MDSCs and present evidences in support of the crucial role of MDSCs in the pathogenesis of AD. 相似文献
17.
Yasmina Manso Javier Carrasco Gemma Comes Paul A. Adlard Ashley I. Bush Juan Hidalgo 《Cellular and molecular life sciences : CMLS》2012,69(21):3665-3681
Alzheimer’s disease (AD) is by far the most commonly diagnosed dementia, and despite multiple efforts, there are still no effective drugs available for its treatment. One strategy that deserves to be pursued is to alter the expression and/or physiological action of endogenous proteins instead of administering exogenous factors. In this study, we intend to characterize the roles of the antioxidant, anti-inflammatory, and heavy-metal binding proteins, metallothionein-1?+?2 (MT1?+?2), in a mouse model of Alzheimer’s disease, Tg2576 mice. Contrary to expectations, MT1?+?2-deficiency rescued partially the human amyloid precursor protein-induced changes in mortality and body weight in a gender-dependent manner. On the other hand, amyloid plaque burden was decreased in the cortex and hippocampus in both sexes, while the amyloid cascade, neuroinflammation, and behavior were affected in the absence of MT1?+?2 in a complex manner. These results highlight that the control of the endogenous production and/or action of MT1?+?2 could represent a powerful therapeutic target in AD. 相似文献
18.
Deposition of amyloid β-protein (Aβ) in the brain is an early and invariant neuropathological feature of Alzheimer’s disease
(AD). The current search for anti-AD drugs is mainly focused on modification of the process of accumulation of Aβ in the brain.
Here, we review four anti-amyloidogenic strategies: (i) reduction of Aβ production, which has mainly been approached with
secretase inhibition, (ii) promotion of the Aβ degrading catabolic pathway, including an Aβ degrading enzyme, neprilysin,
(iii) immunotherapy for Aβ and (iv) inhibition of Aβ aggregation. We have reported that AD patients have a favorable molecular
environment for Aβ aggregation and that various compounds, such as polyphenols, interfere with Aβ aggregation and destabilize
preformed Aβ fibrils.
Received 21 December 2005; received after revision 14 February 2006; accepted 29 March 2006 相似文献
19.
Götz J Eckert A Matamales M Ittner LM Liu X 《Cellular and molecular life sciences : CMLS》2011,68(20):3359-3375
Alzheimer's disease (AD) is reaching epidemic proportions, yet a cure is not yet available. While the genetic causes of the rare familial inherited forms of AD are understood, the causes of the sporadic forms of the disease are not. Histopathologically, these two forms of AD are indistinguishable: they are characterized by amyloid-β (Aβ) peptide-containing amyloid plaques and tau-containing neurofibrillary tangles. In this review we compare AD to frontotemporal dementia (FTD), a subset of which is characterized by tau deposition in the absence of overt plaques. A host of transgenic animal AD models have been established through the expression of human proteins with pathogenic mutations previously identified in familial AD and FTD. Determining how these mutant proteins cause disease in vivo should contribute to an understanding of the causes of the more frequent sporadic forms. We discuss the insight transgenic animal models have provided into Aβ and tau toxicity, also with regards to mitochondrial function and the crucial role tau plays in mediating Aβ toxicity. We also discuss the role of miRNAs in mediating the toxic effects of the Aβ peptide. 相似文献
20.
Aluminium in Alzheimer’s disease: are we still at a crossroad? 总被引:4,自引:0,他引:4
Gupta VB Anitha S Hegde ML Zecca L Garruto RM Ravid R Shankar SK Stein R Shanmugavelu P Jagannatha Rao KS 《Cellular and molecular life sciences : CMLS》2005,62(2):143-158
Aluminium, an environmentally abundant non-redox trivalent cation has long been implicated in the pathogenesis of Alzheimers disease (AD). However, the definite mechanism of aluminium toxicity in AD is not known. Evidence suggests that trace metal homeostasis plays a crucial role in the normal functioning of the brain, and any disturbance in it can exacerbate events associated with AD. The present paper reviews the scientific literature linking aluminium with AD. The focus is on aluminium levels in brain, region-specific and subcellular distribution, its relation to neurofibrillary tangles, amyloid beta, and other metals. A detailed mechanism of the role of aluminium in oxidative stress and cell death is highlighted. The importance of complex speciation chemistry of aluminium in relation to biology has been emphasized. The debatable role of aluminium in AD and the cross-talk between aluminium and genetic susceptibility are also discussed. Finally, it is concluded based on extensive literature that the neurotoxic effects of aluminium are beyond any doubt, and aluminium as a factor in AD cannot be discarded. However, whether aluminium is a sole factor in AD and whether it is a factor in all AD cases still needs to be understood.Received 22 July 2004; received after revision 3 September 2004; accepted 16 September 2004 相似文献