首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
内螺纹管临界压力区内水的传热特性研究   总被引:13,自引:0,他引:13  
对垂直上升的内螺纹管临界压力区内水的传热特性进行了试验研究,根据试验结果,分别在亚临界部分和超临界部分进行了传热机理分析,得到了垂直上升内螺纹管对流沸腾传热随压力、质量流速及热负荷变化的复杂关系,总结了发生传热恶化时的条件,给出了恶化趋势预报,并给出了能用于工程实际的传热试验关联式,结果表明:虽然在临界压力区内内螺纹管改善传热的特性有所减弱,CHF情况有时在过冷区就发生,但是与光管相比,内螺纹管在临界压力区内仍然能够很好地改善传热,降低壁温。  相似文献   

2.
本文针对大型合成氨装置 U 型管转化气废热锅炉爆管问题,在高压电加热水回路试验系统上研究了垂直 U 型管弯管段沸腾传热特性,得出了发生传热恶化的规律和壁温飞升特性,提出了用管内扰流子及改进 U 型管结构来消除传热恶化,以保证U 型管废热锅炉工作的可靠性.  相似文献   

3.
采用双流体模型计算了液氮在垂直管内的上升流动沸腾过程,考察了壁面热通量和液体流量对流动及传热传质特征的影响.结果表明:垂直上升流动沸腾中重力压降占主导地位;根据截面液体温差的变化可判断沸腾模式的转变;壁面热通量与液相流量的相对大小决定了沸腾过程中的传热传质特征.  相似文献   

4.
竖直窄环隙流道自然对流过冷沸腾实验研究   总被引:2,自引:0,他引:2  
以水为工质,在常压下对竖直窄环隙流道进行了内侧加热自然对流过冷沸腾换热实验研究.实验考察了入口过冷度和热流密度对过冷沸腾换热系数的影响.结果表明,当热流密度一定时,换热系数随入口过冷度的增大而减小,而且,当入口过冷度变化趋势不同时,所对应的换热系数也不相同.另外,当入口过冷度为定值时,换热系数随着热流密度的增加出现非单调变化.  相似文献   

5.
垂直上升光管内临界压力区水的传热特性研究   总被引:8,自引:0,他引:8  
对垂直上升光管内临界压力区水的传热特性进行了试验研究。根据试验结果,分别在亚临界部分和超临界部分进行了传热机理分析,得到了垂直上升光管对流沸腾传热随压力,质量流速及热负荷变化的复杂关系,总结了发生传热恶化时的条件,预报了恶化趋势,并给出了能用于工程实际的传热试验关联式。试验结果表明:在亚临界部分中,当压力p/pc为0.98时,发生DNB传热恶化最为明显;在超临界部分中,压力越接近临界压力,传热恶化越剧烈。  相似文献   

6.
分离式热管蒸发段传热特性试验研究   总被引:7,自引:0,他引:7  
通过对分离式热管水平及小倾角 ( 0°~ 5°)蒸发段传热特性的大比例尺模型的试验研究 ,获得了其壁温特性及换热规律 ,探讨了热流密度、工作温度、倾角及充液率等因素对传热特性的影响 .结果表明 ,与蒸发段垂直布置的分离式热管相比 ,水平及小倾角热管的换热系数较小 .特别是当热流密度大于 2 0kW /m2 时 ,蒸发管上下管壁温差增大 ,沿管长方向上管壁温度的波动较大 ,使上壁的换热系数降低 ,局部烧干热负荷过早出现 ,使热管的工作范围减小 .此外 ,还得出了水平蒸发管平均换热系数的无量纲准则关系式 .  相似文献   

7.
R417A在水平光滑管和内螺纹管中的流动沸腾换热   总被引:3,自引:1,他引:3  
对非共沸混合制冷剂R417A在外径为9.52 mm的水平光滑管和2种不同几何参数的内螺纹管中的流动沸腾换热进行实验研究,分析讨论了制冷剂质量流速、热流密度、干度、强化管参数对换热系数的影响规律和影响机理.实验结果表明:换热系数随着质量流速的增大而增大.在以对流蒸发占优势的换热区,热流密度对换热系数的影响较小;换热系数随着干度的增大先呈现出增大趋势,增至高峰值后又迅速下降,高峰值随热流密度的增大和质量流速的减小向干度较大的方向移动;内螺纹管能有效强化制冷剂的流动沸腾换热,R417A在2种内螺纹管中的换热系数分别比在光滑管中高出130%~210%和150%~270%.  相似文献   

8.
利用超超临界660 MW塔式锅炉末级过热器炉内外壁温测点数据,分析在不同负荷下炉内壁温与炉外壁温的关系。结果表明:机组运行过程中,要关注管屏以及同屏管间热负荷分布情况,以便及时通过燃烧调整消除热偏差;随负荷变化,炉内外壁温变化趋势相同,炉外壁温经估算后能够反映炉内管壁的实际温度;壁温监测需要炉内外壁温测点相互配合,以防炉内温度测点所在位置不是热负荷高的区域。  相似文献   

9.
对R22与R417A在水平光滑管和2种不同几何参数的内螺纹管中的流动沸腾换热进行实验研究,分析比较了2种制冷剂流动沸腾换热性能的差异。实验结果表明:R417A的换热性能与R22相比有一定程度的降低,其降低程度因质量流速、干度及换热管参数的不同而异,质量流速越小,R417A换热性能的降低越严重;在x<0.6的较低干度区内,光滑管中R417A的换热系数比R22约降低了20%~40%,内螺纹管中的降低幅度更大,几乎达到50%~60%,在x>0.6的较高干度区内,不同换热管中R417A换热系数的降低幅度较为相近;光滑管中R417A换热系数的降低幅度受干度影响较大,且随干度的增加而增大,内螺纹管中的降低幅度受干度影响较小;强化管对换热的强化效果越好,R417A换热系数的降低幅度就越大。  相似文献   

10.
紧凑管束蒸发换热器内水的沸腾强化换热特性   总被引:2,自引:0,他引:2  
设计了一种新式满液型蒸发换热器,利用水平传热管管束间狭窄受限空间内早期沸腾强化换热机理和同一管束中两管缝隙强化沸腾换热机理,将中小热负荷条件下的自然对流换热转化为充分发展核态沸腾换热,其换热性能大大优于传统的满液型蒸发换热器.对水平传热管管束在受限空间内沸腾强化换热的实验研究表明,这种水平管蒸发换热器具有良好的换热性能;管束距离和传热管在管束中的位置对各个传热管换热特性都有很大影响,且存在着一个最佳管束距离;随着压力增加,受限空间内沸腾强化换热的强化效果显著增强.  相似文献   

11.
超临界压力下水在垂直加热管内传热特性的实验研究   总被引:4,自引:0,他引:4  
采用均匀全周电加热方法,对内径为12mm的垂直上升管内水在超临界压力区中的传热特性进行了实验研究.分析了质量流速、热流密度以及压力对传热特性的影响,发现由于超临界压力下边界层内流体物性的剧烈变化,使拟临界温度附近的传热得到显著强化,传热强化的程度随质量流速的增加而提高,随壁面热流密度和压力的增大而降低.根据实验数据,给出了超临界压力下水在垂直加热管内对流换热的经验关联式,其平均相对误差为11.8%.  相似文献   

12.
The experiment was conducted to investigate the heat transfer performance of supercritical CO_2 in a casing heat exchanger by comparing their heat transfer,entropy production unit number,non-dimensional entropy production rate and field synergy factor.The results show that both heat transfer and entropy production unit number in four tubes decrease with water temperature increasing.Heat transfer and entropy production unit number in multiple tubes( i. e.,triple straight tube and double helix tube) is higher than their single counterparts; the non-dimensional entropy production rate increases with water temperature. Non-dimensional entropy production rate of triple straight tube and double helix tube is far below the single tube. Field synergy factor of double helix tube is much higher than that of the triple straight tube under the same condition. Further experiment was carried out in double helix tube,under various CO_2 pressure and inlet water temperature,the results are analyzed and reported in this paper.  相似文献   

13.
提出了一种使用竖直细小传热管内高速空气-过冷水环状两相流用于质子交换膜型燃料电池高效冷却的方法.理论模拟结果表明。在细小管内壁上过冷水形成非常薄的液膜,壁面热流密度可以分为液膜吸热、液膜蒸发和湿蒸汽吸热。各种因素影响这3部分热量的耦合匹配,使得管内两相流的传热传质特性十分复杂.在管内的前段部分,液膜升温吸收大部分壁面热量。而在大部分区域内,对流蒸发耦合换热是支配性的传热方式。即使在十分高的热流密度条件下,壁温也能够稳定地保持在质子交换膜型燃料电池运行温度以下.探讨了各种流动条件、加热管几何尺寸、壁面热负荷等系统参数对两相流传热传质特性的影响.  相似文献   

14.
以去离子水为工质,在质量流速G=292.8~412.2 kg/(m2·s),入口温度Tin=50.6~81.5 °C,热流密度q"=10.1~87.1 W/cm2的条件下,对圆形、菱形和椭圆形微肋阵通道内沸腾起始点特性进行了实验研究。对微肋阵通道内单相对流传热和两相沸腾传热过程的分析结果表明,壁温和压降曲线的变化趋势均可作为沸腾起始点的判定依据。通过分析各实验参数对沸腾起始点热流密度的影响趋势,发现微肋阵通道内沸腾起始点热流密度随质量流速的增大而增大,但是随着入口温度的增大而减小;在相同工况条件下,圆形、菱形和椭圆形微肋阵通道沸腾起始点热流密度依次减小。  相似文献   

15.
直接使用N-S方程,采用将重力项化为与温度和差压有关函数的处理方法,对垂直矩形窄缝流道中定热流密度下混合单相层流对流换热进行了数值模拟,发现了在整个流道靠近加热壁面区域存在强烈的“烟囱效应”,在层流流动时,由于该效应的存在,使近壁区域的工质扰动加强,从而提高局部对流换热系数,但将造成整个加热壁面换热系数分布不均匀,故该种对流方式只能用于较低热流密度的传热,若壁面的热流密度过高,将对整个流道的安全性造成很大威胁,所建立的浮力影响模型可以预测混合对流时的传热,经过正能用于计算湍流混合对流换热。  相似文献   

16.
本文报道了肋形隧道机械加工表面多孔管(JK—2管)单管管外池沸腾实验。实验工质为R—113和R—11。实验结果表明:对R1131质,JK—2管沸腾给热系数比光滑管高2.5~15倍,临界热负荷高约100%;对工质R—11,JK—2管的沸腾给热系数比光滑管高1~10倍;与机械加工表面多孔管(JK—1管)相比,在工质R—11和R—113中,沸腾给热系数高20%~150%。并建立了一个预报值与实验值误差在±15%以内的准数关联式。  相似文献   

17.
利用FLUENT对超临界水在垂直上升圆管内的传热特性进行了CFD研究,计算结果与Yamagata试验结果进行了对比.采用5种不同湍流模型对同一工况进行计算,结果表明RNG k-ε湍流模型所得到的计算结果与试验结果更为接近.在RNG k-ε湍流模型中比较了不同的y+下的计算结果,结果表明当y+≤1时计算结果与试验结果符合较好,y+=0.1时二者相符最好,最大偏差约为13%.最后选用RNG k-ε湍流模型并取y+=0.1计算了不同的热流密度下的传热特性,结果表明在大比热区低热负荷时传热会得到强化,而随着热负荷的增加,传热强化的效果会被减弱直到出现传热恶化现象.  相似文献   

18.
超临界压力水在水平同心套管间自然对流换热研究   总被引:1,自引:0,他引:1  
通过数值计算深入分析了超临界压力条件下水的强烈的物性变化及对流换热的边界条件对水平同心套管间自然对流换热的影响规律,并为高新技术的发展提供一定的理论基础。采用求解原始变量的有限差分法,并利用大型通用计算程序PHOENICS,对控制方程组进行了数值求解。分析了在内、外管表面均为等壁温边界条件或内管为常热流、外管为等壁温边界条件下,同心套管间的流场和温度场;研究了强烈的变物性、内外表面温差及内管壁面上的热流密度等对内、外管壁上自然对流换热系数的影响规律。结果发现:在内管表面热流密度相同的条件下,不同的外管表面温度所对应的内、外管表面温差及对流换热系数有比较大的差异;在某些条件下,随着热流密度的升高,尽管套管内自然对流流速增大,但是自然对流换热能力却下降。  相似文献   

19.
对双面加热环形窄缝通道内单相水处于充分发展流动情况下的对流换热特性进行了数值计算.计算结果表明,环形通道内、外壁加热热流密度比的不同,对环形通道内、外壁与单相水的对流换热特性有着显著的影响.当内、外壁加热热流密度比较小时,内壁的换热强于外壁,随着内、外壁加热热流密度比的增大,外壁的换热得到增强.但是,当内、外壁加热热流密度比增加到一定程度时,外壁的对流换热特性将超过内壁的对流换热特性.此外,环缝间隙的减小将导致环形通道的换热性能下降.  相似文献   

20.
实验研究了一种新的适用于蒸发冷却过程的鼓泡装置的阻力与传热特性.实验中将换热盘管浸没于空气-水的鼓泡层中,空气-水两相流通过盘管的表面.这种换热方式可以极大的提高换热管与空气之间的换热系数,降低水泵功率的消耗,而且对气流速度的要求低于空冷式冷凝器.文中给出了空气穿过空气-水鼓泡层的压降以及盘管与冷却水之间换热的实验数据,该结果显示影响压降及换热系数的因素包括多孔板的几何尺寸,鼓泡层的高度,空塔速度及热流密度.换热盘管与冷却水之间的换热系数比管外降膜冷却的换热系数大2倍多.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号