首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The identification of liquid ethane in Titan's Ontario Lacus   总被引:1,自引:0,他引:1  
Titan was once thought to have global oceans of light hydrocarbons on its surface, but after 40 close flybys of Titan by the Cassini spacecraft, it has become clear that no such oceans exist. There are, however, features similar to terrestrial lakes and seas, and widespread evidence for fluvial erosion, presumably driven by precipitation of liquid methane from Titan's dense, nitrogen-dominated atmosphere. Here we report infrared spectroscopic data, obtained by the Visual and Infrared Mapping Spectrometer (VIMS) on board the Cassini spacecraft, that strongly indicate that ethane, probably in liquid solution with methane, nitrogen and other low-molecular-mass hydrocarbons, is contained within Titan's Ontario Lacus.  相似文献   

2.
An overview of the descent and landing of the Huygens probe on Titan   总被引:1,自引:0,他引:1  
Titan, Saturn's largest moon, is the only Solar System planetary body other than Earth with a thick nitrogen atmosphere. The Voyager spacecraft confirmed that methane was the second-most abundant atmospheric constituent in Titan's atmosphere, and revealed a rich organic chemistry, but its cameras could not see through the thick organic haze. After a seven-year interplanetary journey on board the Cassini orbiter, the Huygens probe was released on 25 December 2004. It reached the upper layer of Titan's atmosphere on 14 January and landed softly after a parachute descent of almost 2.5 hours. Here we report an overview of the Huygens mission, which enabled studies of the atmosphere and surface, including in situ sampling of the organic chemistry, and revealed an Earth-like landscape. The probe descended over the boundary between a bright icy terrain eroded by fluvial activity--probably due to methane-and a darker area that looked like a river- or lake-bed. Post-landing images showed centimetre-sized surface details.  相似文献   

3.
Titan is the only satellite in our Solar System with a dense atmosphere. The surface pressure is 1.5 bar (ref. 1) and, similar to the Earth, N2 is the main component of the atmosphere. Methane is the second most important component, but it is photodissociated on a timescale of 10(7) years (ref. 3). This short timescale has led to the suggestion that Titan may possess a surface or subsurface reservoir of hydrocarbons to replenish the atmosphere. Here we report near-infrared images of Titan obtained on 26 October 2004 by the Cassini spacecraft. The images show that a widespread methane ocean does not exist; subtle albedo variations instead suggest topographical variations, as would be expected for a more solid (perhaps icy) surface. We also find a circular structure approximately 30 km in diameter that does not resemble any features seen on other icy satellites. We propose that the structure is a dome formed by upwelling icy plumes that release methane into Titan's atmosphere.  相似文献   

4.
Titan, the largest moon of Saturn, is the only satellite in the Solar System with a substantial atmosphere. The atmosphere is poorly understood and obscures the surface, leading to intense speculation about Titan's nature. Here we present observations of Titan from the imaging science experiment onboard the Cassini spacecraft that address some of these issues. The images reveal intricate surface albedo features that suggest aeolian, tectonic and fluvial processes; they also show a few circular features that could be impact structures. These observations imply that substantial surface modification has occurred over Titan's history. We have not directly detected liquids on the surface to date. Convective clouds are found to be common near the south pole, and the motion of mid-latitude clouds consistently indicates eastward winds, from which we infer that the troposphere is rotating faster than the surface. A detached haze at an altitude of 500 km is 150-200 km higher than that observed by Voyager, and more tenuous haze layers are also resolved.  相似文献   

5.
The lakes of Titan   总被引:1,自引:0,他引:1  
The surface of Saturn's haze-shrouded moon Titan has long been proposed to have oceans or lakes, on the basis of the stability of liquid methane at the surface. Initial visible and radar imaging failed to find any evidence of an ocean, although abundant evidence was found that flowing liquids have existed on the surface. Here we provide definitive evidence for the presence of lakes on the surface of Titan, obtained during the Cassini Radar flyby of Titan on 22 July 2006 (T16). The radar imaging polewards of 70 degrees north shows more than 75 circular to irregular radar-dark patches, in a region where liquid methane and ethane are expected to be abundant and stable on the surface. The radar-dark patches are interpreted as lakes on the basis of their very low radar reflectivity and morphological similarities to lakes, including associated channels and location in topographic depressions. Some of the lakes do not completely fill the depressions in which they lie, and apparently dry depressions are present. We interpret this to indicate that lakes are present in a number of states, including partly dry and liquid-filled. These northern-hemisphere lakes constitute the strongest evidence yet that a condensable-liquid hydrological cycle is active in Titan's surface and atmosphere, in which the lakes are filled through rainfall and/or intersection with the subsurface 'liquid methane' table.  相似文献   

6.
Tobie G  Lunine JI  Sotin C 《Nature》2006,440(7080):61-64
Saturn's largest satellite, Titan, has a massive nitrogen atmosphere containing up to 5 per cent methane near its surface. Photochemistry in the stratosphere would remove the present-day atmospheric methane in a few tens of millions of years. Before the Cassini-Huygens mission arrived at Saturn, widespread liquid methane or mixed hydrocarbon seas hundreds of metres in thickness were proposed as reservoirs from which methane could be resupplied to the atmosphere over geologic time. Titan fly-by observations and ground-based observations rule out the presence of extensive bodies of liquid hydrocarbons at present, which means that methane must be derived from another source over Titan's history. Here we show that episodic outgassing of methane stored as clathrate hydrates within an icy shell above an ammonia-enriched water ocean is the most likely explanation for Titan's atmospheric methane. The other possible explanations all fail because they cannot explain the absence of surface liquid reservoirs and/or the low dissipative state of the interior. On the basis of our models, we predict that future fly-bys should reveal the existence of both a subsurface water ocean and a rocky core, and should detect more cryovolcanic edifices.  相似文献   

7.
Hueso R  Sánchez-Lavega A 《Nature》2006,442(7101):428-431
The presence of dry fluvial river channels and the intense cloud activity in the south pole of Titan over the past few years suggest the presence of methane rain. The nitrogen atmosphere of Titan therefore appears to support a methane meteorological cycle that sculptures the surface and controls its properties. Titan and Earth are the only worlds in the Solar System where rain reaches the surface, although the atmospheric cycles of water and methane are expected to be very different. Here we report three-dimensional dynamical calculations showing that severe methane convective storms accompanied by intense precipitation may occur in Titan under the right environmental conditions. The strongest storms grow when the methane relative humidity in the middle troposphere is above 80 per cent, producing updrafts with maximum velocities of 20 m s(-1), able to reach altitudes of 30 km before dissipating in 5-8 h. Raindrops of 1-5 mm in radius produce precipitation rainfalls on the surface as high as 110 kg m(-2) and are comparable to flash flood events on Earth.  相似文献   

8.
West RA  Brown ME  Salinas SV  Bouchez AH  Roe HG 《Nature》2005,436(7051):670-672
With its substantial atmosphere of nitrogen, hydrocarbons and nitriles, Saturn's moon Titan is a unique planetary satellite. Photochemical processing of the gaseous constituents produces an extended haze that obscures the surface. Soon after the Voyager fly-bys in 1980 and 1981 photochemical models led to the conclusion that there should be enough liquid methane/ethane/nitrogen to cover the surface to a depth of several hundred metres. Recent Earth-based radar echoes imply that surface liquid may be present at a significant fraction of the locations sampled. Here we present ground-based observations (at near-infrared wavelengths) and calculations showing that there is no evidence thus far for surface liquid. Combined with the specular signatures from radar observations, we infer mechanisms that produce very flat solid surfaces, involving a substance that was liquid in the past but is not in liquid form at the locations we studied.  相似文献   

9.
The irreversible conversion of methane into higher hydrocarbons in Titan's stratosphere implies a surface or subsurface methane reservoir. Recent measurements from the cameras aboard the Cassini orbiter fail to see a global reservoir, but the methane and smog in Titan's atmosphere impedes the search for hydrocarbons on the surface. Here we report spectra and high-resolution images obtained by the Huygens Probe Descent Imager/Spectral Radiometer instrument in Titan's atmosphere. Although these images do not show liquid hydrocarbon pools on the surface, they do reveal the traces of once flowing liquid. Surprisingly like Earth, the brighter highland regions show complex systems draining into flat, dark lowlands. Images taken after landing are of a dry riverbed. The infrared reflectance spectrum measured for the surface is unlike any other in the Solar System; there is a red slope in the optical range that is consistent with an organic material such as tholins, and absorption from water ice is seen. However, a blue slope in the near-infrared suggests another, unknown constituent. The number density of haze particles increases by a factor of just a few from an altitude of 150 km to the surface, with no clear space below the tropopause. The methane relative humidity near the surface is 50 per cent.  相似文献   

10.
Hunten DM 《Nature》2006,443(7112):669-670
Saturn's largest satellite, Titan, has a dense atmosphere of nitrogen with a few per cent of methane. At visible wavelengths its surface is hidden by dense orange-brown smog, which is produced in the stratosphere by photochemical reactions following the dissociation of methane by solar ultraviolet light. The most abundant of the products of these reactions is ethane, and enough of it should have been generated over the life of the Solar System to form a satellite-wide ocean one kilometre deep. Radar observations have found specular reflections in 75 per cent of the surface spots observed, but optical searches for a sun-glint off an ocean have been negative. Here I explain the mysterious absence or rarity of liquid ethane: it condenses onto the smog particles, instead of into liquid drops, at the cold temperatures in Titan's atmosphere. This dusty combination of smog and ethane, forming deposits several kilometres thick on the surface, including the observed dunes and dark areas, could be named 'smust'. This satellite-wide deposit replaces the ocean long thought to be an important feature of Titan.  相似文献   

11.
Brown ME  Bouchez AH  Griffith CA 《Nature》2002,420(6917):795-797
Atmospheric conditions on Saturn's largest satellite, Titan, allow the possibility that it could possess a methane condensation and precipitation cycle with many similarities to Earth's hydrological cycle. Detailed imaging studies of Titan have hitherto shown no direct evidence for tropospheric condensation clouds, although there has been indirect spectroscopic evidence for transient clouds. Here we report images and spectra of Titan that show clearly transient clouds, concentrated near the south pole, which is currently near the point of maximum solar heating. The discovery of these clouds demonstrates the existence of condensation and localized moist convection in Titan's atmosphere. Their location suggests that methane cloud formation is controlled seasonally by small variations in surface temperature, and that the clouds will move from the south to the north pole on a 15-year timescale.  相似文献   

12.
Methane hydrate is thought to have been the dominant methane-containing phase in the nebula from which Saturn, Uranus, Neptune and their major moons formed. It accordingly plays an important role in formation models of Titan, Saturn's largest moon. Current understanding assumes that methane hydrate dissociates into ice and free methane in the pressure range 1-2 GPa (10-20 kbar), consistent with some theoretical and experimental studies. But such pressure-induced dissociation would have led to the early loss of methane from Titan's interior to its atmosphere, where it would rapidly have been destroyed by photochemical processes. This is difficult to reconcile with the observed presence of significant amounts of methane in Titan's present atmosphere. Here we report neutron and synchrotron X-ray diffraction studies that determine the thermodynamic behaviour of methane hydrate at pressures up to 10 GPa. We find structural transitions at about 1 and 2 GPa to new hydrate phases which remain stable to at least 10 GPa. This implies that the methane in the primordial core of Titan remained in stable hydrate phases throughout differentiation, eventually forming a layer of methane clathrate approximately 100 km thick within the ice mantle. This layer is a plausible source for the continuing replenishment of Titan's atmospheric methane.  相似文献   

13.
Biemann K 《Nature》2006,444(7118):E6; disccussion E6-E6; disccussion E7
On 14 January 2005, the Huygens probe entered the atmosphere of Titan after a seven-year interplanetary flight as part of the Cassini mission to Saturn. Huygens carried, among other instruments, an aerosol collection and pyrolysis (ACP) device. Its designers, Isra?l et al., now claim to have detected complex organic matter in two aerosol samples collected at different altitudes (130-35 km and 25-20 km, respectively), on the basis of their detection of ammonia (NH3) and hydrogen cyanide (HCN) when the sample oven was heated to 600 degrees C. However, the authors' remarkable conclusions, which would have far-reaching consequences for our understanding of the chemical environment prevailing on Saturn's largest moon, are not supported by their limited data.  相似文献   

14.
Biemann K 《Nature》2006,444(7119):E6; discussion E6-E6; discussion E7
On 14 January 2005, the Huygens probe entered the atmosphere of Titan after a seven-year interplanetary flight as part of the Cassini mission to Saturn. Huygens carried, among other instruments, an aerosol collection and pyrolysis (ACP) device. Its designers, Isra?l et al., now claim to have detected complex organic matter in two aerosol samples collected at different altitudes (130-35 km and 25-20 km, respectively), on the basis of their detection of ammonia (NH3) and hydrogen cyanide (HCN) when the sample oven was heated to 600 degrees C. However, the authors' remarkable conclusions, which would have far-reaching consequences for our understanding of the chemical environment prevailing on Saturn's largest moon, are not supported by their limited data.  相似文献   

15.
Pinto JP  Lunine JI  Kim SJ  Yung YL 《Nature》1986,319(6052):388-390
A value of 1.7 x 10(-3) has been reported for the ratio of CH3D to CH4 in the stratosphere of the saturnian moon Titan. A lower value of 6 x 10(-4) for this ratio in the deeper part of Titan's atmosphere was reported by de Bergh et al. For comparison we note that the CH3D to CH4 ratio on Saturn and Jupiter is 8.7 x 10(-5) and 6.7 x 10(-5), respectively. We estimate the uncertainties in all these observations and data reduction to be about a factor of 2. Despite these uncertainties it appears that Titan's atmosphere is enriched in deuterium by a factor of > or = 3 relative to Jupiter and Saturn. Potential causative factors examined here for this enrichment are condensation to form tropospheric methane clouds, fractionation occurring over a hypothetical CH4-C2H6 ocean and between the ocean and the clathrate crust beneath, fractionation which occurred during the formation of Titan and fractionation occurring as a result of the evolution of Titan's atmosphere. We conclude that the greater part of the observed fractionation is probably derived from the formation of Titan and the subsequent evolution of Titan's atmosphere driven by photochemistry.  相似文献   

16.
Griffith CA  Lora JM  Turner J  Penteado PF  Brown RH  Tomasko MG  Doose L  See C 《Nature》2012,486(7402):237-239
Titan has clouds, rain and lakes--like Earth--but composed of methane rather than water. Unlike Earth, most of the condensable methane (the equivalent of 5?m depth globally averaged) lies in the atmosphere. Liquid detected on the surface (about 2?m deep) has been found by radar images only poleward of 50° latitude, while dune fields pervade the tropics. General circulation models explain this dichotomy, predicting that methane efficiently migrates to the poles from these lower latitudes. Here we report an analysis of near-infrared spectral images of the region between 20°?N and 20°?S latitude. The data reveal that the lowest fluxes in seven wavelength bands that probe Titan's surface occur in an oval region of about 60?×?40?km(2), which has been observed repeatedly since 2004. Radiative transfer analyses demonstrate that the resulting spectrum is consistent with a black surface, indicative of liquid methane on the surface. Enduring low-latitude lakes are best explained as supplied by subterranean sources (within the last 10,000 years), which may be responsible for Titan's methane, the continual photochemical depletion of which furnishes Titan's organic chemistry.  相似文献   

17.
Watson EB  Thomas JB  Cherniak DJ 《Nature》2007,449(7160):299-304
The solid Earth is widely believed to have lost its original gases through a combination of early catastrophic release and regulated output over geologic time. In principle, the abundance of 40Ar in the atmosphere represents the time-integrated loss of gases from the interior, thought to occur through partial melting in the mantle followed by melt ascent to the surface and gas exsolution. Here we present data that reveal two major difficulties with this simple magmatic degassing scenario--argon seems to be compatible in the major phases of the terrestrial planets, and argon diffusion in these phases is slow at upper-mantle conditions. These results challenge the common belief that the upper mantle is nearly degassed of 40Ar, and they call into question the suitability of 40Ar as a monitor of planetary degassing. An alternative to magmatism is needed to release argon to the atmosphere, with one possibility being hydration of oceanic lithosphere consisting of relatively argon-rich olivine and orthopyroxene.  相似文献   

18.
The detection of impulsive low-frequency (10 to 80 kHz) radio signals, and separate very-low-frequency (approximately 100 Hz) radio 'whistler' signals provided the first evidence for lightning in the atmosphere of Venus. Later, a small number of impulsive high-frequency (100 kHz to 5.6 MHz) radio signals, possibly due to lightning, were also detected. The existence of lightning at Venus has, however, remained controversial. Here we report the results of a search for high-frequency (0.125 to 16 MHz) radio signals during two close fly-bys of Venus by the Cassini spacecraft. Such signals are characteristic of terrestrial lightning, and are commonly heard on AM (amplitude-modulated) radios during thunderstorms. Although the instrument easily detected signals from terrestrial lightning during a later fly-by of Earth (at a global flash rate estimated to be 70 s(-1), which is consistent with the rate expected for terrestrial lightning), no similar signals were detected from Venus. If lightning exists in the venusian atmosphere, it is either extremely rare, or very different from terrestrial lightning.  相似文献   

19.
Permafrost contains an estimated 1672?Pg carbon (C), an amount roughly equivalent to the total currently contained within land plants and the atmosphere. This reservoir of C is vulnerable to decomposition as rising global temperatures cause the permafrost to thaw. During thaw, trapped organic matter may become more accessible for microbial degradation and result in greenhouse gas emissions. Despite recent advances in the use of molecular tools to study permafrost microbial communities, their response to thaw remains unclear. Here we use deep metagenomic sequencing to determine the impact of thaw on microbial phylogenetic and functional genes, and relate these data to measurements of methane emissions. Metagenomics, the direct sequencing of DNA from the environment, allows the examination of whole biochemical pathways and associated processes, as opposed to individual pieces of the metabolic puzzle. Our metagenome analyses reveal that during transition from a frozen to a thawed state there are rapid shifts in many microbial, phylogenetic and functional gene abundances and pathways. After one week of incubation at 5?°C, permafrost metagenomes converge to be more similar to each other than while they are frozen. We find that multiple genes involved in cycling of C and nitrogen shift rapidly during thaw. We also construct the first draft genome from a complex soil metagenome, which corresponds to a novel methanogen. Methane previously accumulated in permafrost is released during thaw and subsequently consumed by methanotrophic bacteria. Together these data point towards the importance of rapid cycling of methane and nitrogen in thawing permafrost.  相似文献   

20.
Keppler F  Vigano I  McLeod A  Ott U  Früchtl M  Röckmann T 《Nature》2012,486(7401):93-96
Almost a decade after methane was first reported in the atmosphere of Mars there is an intensive discussion about both the reliability of the observations--particularly the suggested seasonal and latitudinal variations--and the sources of methane on Mars. Given that the lifetime of methane in the Martian atmosphere is limited, a process on or below the planet's surface would need to be continuously producing methane. A biological source would provide support for the potential existence of life on Mars, whereas a chemical origin would imply that there are unexpected geological processes. Methane release from carbonaceous meteorites associated with ablation during atmospheric entry is considered negligible. Here we show that methane is produced in much larger quantities from the Murchison meteorite (a type CM2 carbonaceous chondrite) when exposed to ultraviolet radiation under conditions similar to those expected at the Martian surface. Meteorites containing several per cent of intact organic matter reach the Martian surface at high rates, and our experiments suggest that a significant fraction of the organic matter accessible to ultraviolet radiation is converted to methane. Ultraviolet-radiation-induced methane formation from meteorites could explain a substantial fraction of the most recently estimated atmospheric methane mixing ratios. Stable hydrogen isotope analysis unambiguously confirms that the methane released from Murchison is of extraterrestrial origin. The stable carbon isotope composition, in contrast, is similar to that of terrestrial microbial origin; hence, measurements of this signature in future Mars missions may not enable an unambiguous identification of biogenic methane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号