首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Patterns and processes in reef fish diversity   总被引:1,自引:0,他引:1  
Mora C  Chittaro PM  Sale PF  Kritzer JP  Ludsin SA 《Nature》2003,421(6926):933-936
A central aim of ecology is to explain the heterogeneous distribution of biodiversity on earth. As expectations of diversity loss grow, this understanding is also critical for effective management and conservation. Although explanations for biodiversity patterns are still a matter for intense debate, they have often been considered to be scale-dependent. At large geographical scales, biogeographers have suggested that variation in species richness results from factors such as area, temperature, environmental stability, and geological processes, among many others. From the species pools generated by these large-scale processes, community ecologists have suggested that local-scale assembly of communities is achieved through processes such as competition, predation, recruitment, disturbances and immigration. Here we analyse hypotheses on speciation and dispersal for reef fish from the Indian and Pacific oceans and show how dispersal from a major centre of origination can simultaneously account for both large-scale gradients in species richness and the structure of local communities.  相似文献   

2.
Positive relationships between species diversity and productivity have been reported for a number of ecosystems. Theoretical and experimental studies have attempted to determine the mechanisms that generate this pattern over short timescales, but little attention has been given to the problem of understanding how diversity and productivity are linked over evolutionary timescales. Here, we investigate the role of dispersal in determining both diversity and productivity over evolutionary timescales, using experimental metacommunities of the bacterium Pseudomonas fluorescens assembled by divergent natural selection. We show that both regional diversity and productivity peak at an intermediate dispersal rate. Moreover, we demonstrate that these two patterns are linked: selection at intermediate rates of dispersal leads to high niche differentiation between genotypes, allowing greater coverage of the heterogeneous environment and a higher regional productivity. We argue that processes that operate over both ecological and evolutionary timescales should be jointly considered when attempting to understand the emergence of ecosystem-level properties such as diversity-function relationships.  相似文献   

3.
Lambers JH  Clark JS  Beckage B 《Nature》2002,417(6890):732-735
Ecologists have long postulated that density-dependent mortality maintains high tree diversity in the tropics. If species experience greater mortality when abundant, then more rare species can persist. Agents of density-dependent mortality (such as host-specific predators, and pathogens) may be more prevalent or have stronger effects in tropical forests, because they are not limited by climatic factors. If so, decreasing density-dependent mortality with increasing latitude could partially explain the observed latitudinal gradient in tree diversity. This hypothesis has never been tested with latitudinal data. Here we show that several temperate tree species experience density-dependent mortality between seed dispersal and seedling establishment. The proportion of species affected is equivalent to that in tropical forests, failing to support the hypothesis that this mechanism is more prevalent at tropical latitudes. We further show that density-dependent mortality is misinterpreted in previous studies. Our results and evidence from other studies suggest that density-dependent mortality is important in many forests. Thus, unless the strength of density-dependent mortality varies with latitude, this mechanism is not likely to explain the high diversity of tropical forests.  相似文献   

4.
Volkov I  Banavar JR  Hubbell SP  Maritan A 《Nature》2007,450(7166):45-49
A formidable many-body problem in ecology is to understand the complex of factors controlling patterns of relative species abundance (RSA) in communities of interacting species. Unlike many problems in physics, the nature of the interactions in ecological communities is not completely known. Although most contemporary theories in ecology start with the basic premise that species interact, here we show that a theory in which all interspecific interactions are turned off leads to analytical results that are in agreement with RSA data from tropical forests and coral reefs. The assumption of non-interacting species leads to a sampling theory for the RSA that yields a simple approximation at large scales to the exact theory. Our results show that one can make significant theoretical progress in ecology by assuming that the effective interactions among species are weak in the stationary states in species-rich communities such as tropical forests and coral reefs.  相似文献   

5.
Examining patterns of inter-population genetic diversity can provide valuable information about both historical and current evolutionary processes affecting a species. Population genetic studies of flying and migratory species such as bats and birds have traditionally shown minimal population substructure, characterized by high levels of gene flow between populations. In general, strongly substructured mammalian populations either are separated by non-traversable barriers or belong to terrestrial species with low dispersal abilities. Species with female philopatry (the tendency to remain in or consistently return to the natal territory) might show strong substructure when examined with maternally inherited mitochondrial DNA, but this substructure generally disappears when biparentally inherited markers are used, owing to male-mediated gene flow. Male-biased dispersal is considered typical for mammals, and philopatry in both sexes is rare. Here we show strong population substructure in a migratory bat species, and philopatry in both sexes, as indicated by concordance of nuclear and mtDNA findings. Furthermore, the genetic structure correlates with local biomes and differentiation in wing morphology. There is therefore a close correlation of genetic and morphological differentiation in sympatric subspecific populations of this mammalian species.  相似文献   

6.
Neutral theory and relative species abundance in ecology   总被引:1,自引:0,他引:1  
Volkov I  Banavar JR  Hubbell SP  Maritan A 《Nature》2003,424(6952):1035-1037
The theory of island biogeography asserts that an island or a local community approaches an equilibrium species richness as a result of the interplay between the immigration of species from the much larger metacommunity source area and local extinction of species on the island (local community). Hubbell generalized this neutral theory to explore the expected steady-state distribution of relative species abundance (RSA) in the local community under restricted immigration. Here we present a theoretical framework for the unified neutral theory of biodiversity and an analytical solution for the distribution of the RSA both in the metacommunity (Fisher's log series) and in the local community, where there are fewer rare species. Rare species are more extinction-prone, and once they go locally extinct, they take longer to re-immigrate than do common species. Contrary to recent assertions, we show that the analytical solution provides a better fit, with fewer free parameters, to the RSA distribution of tree species on Barro Colorado Island, Panama, than the lognormal distribution.  相似文献   

7.
Calsbeek R  Smith TB 《Nature》2003,426(6966):552-555
Islands are considered to be natural laboratories in which to examine evolution because of the implicit assumption that limited gene flow allows tests of evolutionary processes in isolated replicates. Here we show that this well-accepted idea requires re-examination. Island inundation during hurricanes can have devastating effects on lizard populations in the Bahamas. After severe storms, islands may be recolonized by over-water dispersal of lizards from neighbouring islands. High levels of gene flow may homogenize genes responsible for divergence, and are widely viewed as a constraining force on evolution. Ultimately, the magnitude of gene flow determines the extent to which populations diverge from one another, and whether or not they eventually form new species. We show that patterns of gene flow among island populations of Anolis lizards are best explained by prevailing ocean currents, and that over-water dispersal has evolutionary consequences. Across islands, divergence in fitness-related morphology decreases with increasing gene flow. Results suggest that over-water dispersal after hurricanes constrains adaptive diversification in Anolis lizards, and that it may have an important but previously undocumented role in this classical example of adaptive radiation.  相似文献   

8.
Evolution driven by differential dispersal within a wild bird population   总被引:1,自引:0,他引:1  
Garant D  Kruuk LE  Wilkin TA  McCleery RH  Sheldon BC 《Nature》2005,433(7021):60-65
Evolutionary theory predicts that local population divergence will depend on the balance between the diversifying effect of selection and the homogenizing effect of gene flow. However, spatial variation in the expression of genetic variation will also generate differential evolutionary responses. Furthermore, if dispersal is non-random it may actually reinforce, rather than counteract, evolutionary differentiation. Here we document the evolution of differences in body mass within a population of great tits, Parus major, inhabiting a single continuous woodland, over a 36-year period. We show that genetic variance for nestling body mass is spatially variable, that this generates different potential responses to selection, and that this diversifying effect is reinforced by non-random dispersal. Matching the patterns of variation, selection and evolution with population ecological data, we argue that the small-scale differentiation is driven by density-related differences in habitat quality affecting settlement decisions. Our data show that when gene flow is not homogeneous, evolutionary differentiation can be rapid and can occur over surprisingly small spatial scales. Our findings have important implications for questions of the scale of adaptation and speciation, and challenge the usual treatment of dispersal as a force opposing evolutionary differentiation.  相似文献   

9.
Ecological and evolutionary processes at expanding range margins   总被引:25,自引:0,他引:25  
Many animals are regarded as relatively sedentary and specialized in marginal parts of their geographical distributions. They are expected to be slow at colonizing new habitats. Despite this, the cool margins of many species' distributions have expanded rapidly in association with recent climate warming. We examined four insect species that have expanded their geographical ranges in Britain over the past 20 years. Here we report that two butterfly species have increased the variety of habitat types that they can colonize, and that two bush cricket species show increased fractions of longer-winged (dispersive) individuals in recently founded populations. Both ecological and evolutionary processes are probably responsible for these changes. Increased habitat breadth and dispersal tendencies have resulted in about 3- to 15-fold increases in expansion rates, allowing these insects to cross habitat disjunctions that would have represented major or complete barriers to dispersal before the expansions started. The emergence of dispersive phenotypes will increase the speed at which species invade new environments, and probably underlies the responses of many species to both past and future climate change.  相似文献   

10.
Kerr B  Riley MA  Feldman MW  Bohannan BJ 《Nature》2002,418(6894):171-174
One of the central aims of ecology is to identify mechanisms that maintain biodiversity. Numerous theoretical models have shown that competing species can coexist if ecological processes such as dispersal, movement, and interaction occur over small spatial scales. In particular, this may be the case for non-transitive communities, that is, those without strict competitive hierarchies. The classic non-transitive system involves a community of three competing species satisfying a relationship similar to the children's game rock-paper-scissors, where rock crushes scissors, scissors cuts paper, and paper covers rock. Such relationships have been demonstrated in several natural systems. Some models predict that local interaction and dispersal are sufficient to ensure coexistence of all three species in such a community, whereas diversity is lost when ecological processes occur over larger scales. Here, we test these predictions empirically using a non-transitive model community containing three populations of Escherichia coli. We find that diversity is rapidly lost in our experimental community when dispersal and interaction occur over relatively large spatial scales, whereas all populations coexist when ecological processes are localized.  相似文献   

11.
考虑一类具有非线性出生率的单种群双斑块扩散模型,研究非线性出生率和扩散对生物种群的影响.探讨系统平衡点的存在性、局部稳定性和全局稳定性,运用数值模拟分析非线性出生率和扩散常数D1、D2对种群动力学的影响.研究结果表明,在一些适当的假设下,绝灭平衡点或唯一正平衡点可能全局渐近稳定,且非线性出生率和扩散会使得两个斑块内种群持久生存或灭绝.通过数值模拟,当出生率(a1)增大或密度依赖系数(A)减小时,种群总密度会增加.当D1减小或D2增大时,种群总密度也会增加.以上结果表明,物种的出生率和扩散对系统动力学行为起重要的作用.  相似文献   

12.
Although patterns of tree species distributions along environmental gradients have been amply documented in tropical forests, mechanisms causing these patterns are seldom known. Efforts to evaluate proposed mechanisms have been hampered by a lack of comparative data on species' reactions to relevant axes of environmental variation. Here we show that differential drought sensitivity shapes plant distributions in tropical forests at both regional and local scales. Our analyses are based on experimental field assessments of drought sensitivity of 48 species of trees and shrubs, and on their local and regional distributions within a network of 122 inventory sites spanning a rainfall gradient across the Isthmus of Panama. Our results suggest that niche differentiation with respect to soil water availability is a direct determinant of both local- and regional-scale distributions of tropical trees. Changes in soil moisture availability caused by global climate change and forest fragmentation are therefore likely to alter tropical species distributions, community composition and diversity.  相似文献   

13.
Bezemer TM  van der Putten WH 《Nature》2007,446(7135):E6-7; discussion E7-8
The relationship between species diversity and ecosystem stability is controversial. Tilman et al. analyse biomass patterns over a decade in a grassland experiment with artificial plant communities, and provide evidence for a positive relationship between the number of plant species and the temporal stability of the ecosystem. Here we use data from a long-term biodiversity experiment with plant communities that were not controlled by weeding in order to show that diverse systems can be both stable and unstable.  相似文献   

14.
W R Young  A J Roberts  G Stuhne 《Nature》2001,412(6844):328-331
Clustering of organisms can be a consequence of social behaviour, or of the response of individuals to chemical and physical cues. Environmental variability can also cause clustering: for example, marine turbulence transports plankton and produces chlorophyll concentration patterns in the upper ocean. Even in a homogeneous environment, nonlinear interactions between species can result in spontaneous pattern formation. Here we show that a population of independent, random-walking organisms ('brownian bugs'), reproducing by binary division and dying at constant rates, spontaneously aggregates. Using an individual-based model, we show that clusters form out of spatially homogeneous initial conditions without environmental variability, predator-prey interactions, kinesis or taxis. The clustering mechanism is reproductively driven-birth must always be adjacent to a living organism. This clustering can overwhelm diffusion and create non-poissonian correlations between pairs (parent and offspring) or organisms, leading to the emergence of patterns.  相似文献   

15.
Gompel N  Carroll SB 《Nature》2003,424(6951):931-935
Some morphological traits differ greatly between related species, but it is not clear whether diversity evolves through changes in the same genes and whether similar, independent (that is, convergent) changes occur by the same mechanism. Pigmentation in fruitflies presents an attractive opportunity to explore these issues because pigmentation patterns are diverse, similar patterns have arisen in independent clades, and numerous genes governing their formation have been identified in Drosophila melanogaster. Here we show that both evolutionary diversification and convergence can be due to evolution at the same locus, by comparing abdominal pigmentation and trichome patterns and the expression of Bric-à-brac2 (Bab2), which regulates both traits in D. melanogaster, in 13 species representing the major clades of the subfamily Drosophilinae. Modifications of Bab2 expression are frequently correlated with diverse pigmentation and trichome patterns that evolved independently in multiple lineages. In a few species, Bab2 expression is not correlated with changes in pigmentation but is correlated with a conserved pattern of trichomes, indicating that this locus can be circumvented to evolve new patterns when a correlated trait is under different constraints.  相似文献   

16.
Dornelas M  Connolly SR  Hughes TP 《Nature》2006,440(7080):80-82
The global decline of coral reefs highlights the need to understand the mechanisms that regulate community structure and sustain biodiversity in these systems. The neutral theory, which assumes that individuals are demographically identical regardless of species, seeks to explain ubiquitous features of community structure and biodiversity patterns. Here we present a test of neutral-theory predictions with the use of an extensive species-level data set of Indo-Pacific coral communities. We show that coral assemblages differ markedly from neutral-model predictions for patterns of community similarity and the relative abundance of species. Within local communities, neutral models do not fit relative abundance distributions as well as the classical log-normal distribution. Relative abundances of species across local communities also differ markedly from neutral-theory predictions: coral communities exhibit community similarity values that are far more variable, and lower on average, than the neutral theory can produce. Empirical community similarities deviate from the neutral model in a direction opposite to that predicted in previous critiques of the neutral theory. Instead, our results support spatio-temporal environmental stochasticity as a major driver of diversity patterns on coral reefs.  相似文献   

17.
Beldade P  Koops K  Brakefield PM 《Nature》2002,416(6883):844-847
Evolutionary developmental biology has encouraged a change of research emphasis from the sorting of phenotypic variation by natural selection to the production of that variation through development. Some morphologies are more readily generated than others, and developmental mechanisms can limit or channel evolutionary change. Such biases determine how readily populations are able to respond to selection, and have been postulated to explain stasis in morphological evolution and unexplored morphologies. There has been much discussion about evolutionary constraints but empirical data testing them directly are sparse. The spectacular diversity in butterfly wing patterns is suggestive of how little constrained morphological evolution can be. However, for wing patterns involving serial repeats of the same element, developmental properties suggest that some directions of evolutionary change might be restricted. Here we show that despite the developmental coupling between different eyespots in the butterfly Bicyclus anynana, there is great potential for independent changes. This flexibility is consistent with the diversity of wing patterns across species and argues for a dominant role of natural selection, rather than internal constraints, in shaping existing variation.  相似文献   

18.
19.
Dwyer G  Dushoff J  Yee SH 《Nature》2004,430(6997):341-345
The economic damage caused by episodic outbreaks of forest-defoliating insects has spurred much research, yet why such outbreaks occur remains unclear. Theoretical biologists argue that outbreaks are driven by specialist pathogens or parasitoids, because host-pathogen and host-parasitoid models show large-amplitude, long-period cycles resembling time series of outbreaks. Field biologists counter that outbreaks occur when generalist predators fail, because predation in low-density defoliator populations is usually high enough to prevent outbreaks. Neither explanation is sufficient, however, because the time between outbreaks in the data is far more variable than in host-pathogen and host-parasitoid models, and far shorter than in generalist-predator models. Here we show that insect outbreaks can be explained by a model that includes both a generalist predator and a specialist pathogen. In this host-pathogen-predator model, stochasticity causes defoliator densities to fluctuate erratically between an equilibrium maintained by the predator, and cycles driven by the pathogen. Outbreaks in this model occur at long but irregular intervals, matching the data. Our results suggest that explanations of insect outbreaks must go beyond classical models to consider interactions among multiple species.  相似文献   

20.
Chameleon radiation by oceanic dispersal   总被引:15,自引:0,他引:15  
Raxworthy CJ  Forstner MR  Nussbaum RA 《Nature》2002,415(6873):784-787
Historical biogeography is dominated by vicariance methods that search for a congruent pattern of fragmentation of ancestral distributions produced by shared Earth history. A focus of vicariant studies has been austral area relationships and the break-up of the supercontinent Gondwana. Chameleons are one of the few extant terrestrial vertebrates thought to have biogeographic patterns that are congruent with the Gondwanan break-up of Madagascar and Africa. Here we show, using molecular and morphological evidence for 52 chameleon taxa, support for a phylogeny and area cladogram that does not fit a simple vicariant history. Oceanic dispersal--not Gondwanan break-up--facilitated species radiation, and the most parsimonious biogeographic hypothesis supports a Madagascan origin for chameleons, with multiple 'out-of-Madagascar' dispersal events to Africa, the Seychelles, the Comoros archipelago, and possibly Reunion Island. Although dispersal is evident in other Indian Ocean terrestrial animal groups, our study finds substantial out-of-Madagascar species radiation, and further highlights the importance of oceanic dispersal as a potential precursor for speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号