首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
H Inagaki  H Haimoto  S Hosoda  K Kato 《Experientia》1988,44(9):749-751
To elucidate the localization of the subunit C of aldolase (aldolase C) in peripheral neuroendocrine cells, we made an immunohistochemical study with monospecific antibodies against human aldolase C. Aldolase C was found to be localized in various types of neuroendocrine cells; in the pituitary gland, thyroid, pancreas, adrenal gland, bronchus, and gastrointestinal tract.  相似文献   

2.
Melatonin from the retina and the pineal gland functions in neuroendocrine hierarchies. Photoreceptors — eyes and extraretinal — detect light. Oscillators — pineal and suprachiasmatic nuclei — act as pacemakers. Driven neuroendocrine rhythms carry temporal hormone signals throughout the body. Light controls melatonin: light sets the phase of the melatonin rhythm and determines the duration of melatonin synthesis. By these means, circadian rhythms (e.g. in locomotor activity and body temperature) and seasonal rhythms (e.g. in reproduction) are controlled.  相似文献   

3.
Summary The anterior pituitary of teleosts is unique among vertebrates in receiving a direct innervation which represents the morphological support of the neuroendocrine control of pars distalis functions. The participation of GABAergic fibers in this innervation was studied by means of immunocytochemistry at the light and electron microscopic levels, using antibodies against GABA. Immunoreactive fibers, characterized by the presence of small clear and dense cored vesicles, were detected in all parts of the gland. Immunopositive terminals were found in close, sometimes synaptic-like, contact with most glandular cell types in the anterior lobe. The data strongly suggest that in teleosts, as in mammals, GABA is involved in the neuroendocrine control of anterior pituitary functions.  相似文献   

4.
The anterior pituitary of teleosts is unique among vertebrates in receiving a direct innervation which represents the morphological support of the neuroendocrine control of pars distalis functions. The participation of GABAergic fibers in this innervation was studied by means of immunocytochemistry at the light and electron microscopic levels, using antibodies against GABA. Immunoreactive fibers, characterized by the presence of small clear and dense cored vesicles, were detected in all parts of the gland. Immunopositive terminals were found in close, sometimes synaptic-like, contact with most glandular cell types in the anterior lobe. The data strongly suggest that in teleosts, as in mammals, GABA is involved in the neuroendocrine control of anterior pituitary functions.  相似文献   

5.
Summary The direction of change in daylength provides the seasonal time cue for the timing of puberty in many mammalian species. The pattern of melatonin secretion from the pineal gland transduces the environmental light-dark cycle into a signal influencing the neuroendocrine control of sexual maturation. The change in duration of nocturnal melatonin secretion is probably the key feature of the melatonin signal which conveys daylength information. This information may also be used by neuroendocrine axes controlling seasonal changes in pelage colour, growth and metabolism. The mechanism of action of melatonin on neuroendocrine pathways is unknow. Although the ability to synthesize and secrete melatonin in a pattern that reflects the duration of the night may not occur until the postnatal period, the rodent and ovine foetus has the ability to respond in utero to photoperiodic cues to which its mother is exposed in late gestation. Transplacental passage of maternal melatonin is likely to be the mechanism by which photoperiodic cues reach the foetus. Species which do not exhibit seasonal patterns of puberty, such as the human, also secrete melatonin in a pattern which reflects the environmental light-dark cycle, but they do not respond reproductively to the seasonal melatonin information.  相似文献   

6.
Pineal melatonin rhythms and the timing of puberty in mammals   总被引:2,自引:0,他引:2  
F J Ebling  D L Foster 《Experientia》1989,45(10):946-954
The direction of change in daylength provides the seasonal time cue for the timing of puberty in many mammalian species. The pattern of melatonin secretion from the pineal gland transduces the environmental light-dark cycle into a signal influencing the neuroendocrine control of sexual maturation. The change in duration of nocturnal melatonin secretion is probably the key feature of the melatonin signal which conveys daylength information. This information may also be used by neuroendocrine axes controlling seasonal changes in pelage colour, growth and metabolism. The mechanism of action of melatonin on neuroendocrine pathways is unknown. Although the ability to synthesize and secrete melatonin in a pattern that reflects the duration of the night may not occur until the postnatal period, the rodent and ovine foetus has the ability to respond in utero to photoperiodic cues to which its mother is exposed in late gestation. Transplacental passage of maternal melatonin is likely to be the mechanism by which photoperiodic cues reach the foetus. Species which do not exhibit seasonal patterns of puberty, such as the human, also secrete melatonin in a pattern which reflects the environmental light-dark cycle, but they do not respond reproductively to the seasonal melatonin information.  相似文献   

7.
Summary Submaxillary gland cells from female C3H mice were isolated, cultivated in vitro and their metabolic properties compared with those of male derived cells. From the results it can be concluded that these cells retain their metabolic differences when grown in vitro.This work was supported by grant No. CT 73.00642.04 from the Consiglio Nazionale delle Ricerche (C.N.R.), Roma, Italy.  相似文献   

8.
By means of indirect immunofluorescence with sera obtained from patients after bone marrow transplantation it has been demonstrated that antibodies were reacting with the cytoplasm of basal cells ((C.B.C.) in the external root sheath of hairs (E.R.S.). Some sera were found to react with C.B.C. of the E.R.S. but not with the C.B.C of the epidermis. The change in the antigenic properties of the basal cells was found to be situated at the orifice of the sebaceous gland duct.  相似文献   

9.
Summary The activity of aldolase and succinatdehydrogenase (SDH) in white and red skeletal muscle of young (3–7 months) and old (20–30 months) rats has been determined. In addition also the SDH of liver was measured. The activity of aldolase is higher in white than in red muscles, while SDH shows a higher activity in red than in white muscles. The activity of aldolase is not influenced by ageing in white muscles, but decreased in red muscles by 23%. In old animals the activity of SDH is 34% less in white and 52% less in red muscles. In liver the activity is 44% less. The significance of these changes for the energy metabolism of skeletal muscle is discussed.  相似文献   

10.
Chemical sympathectomy is widely used to study the impact of the noradrenergic system on neuronal and neuroendocrine circuits. We tested the effects of intraperitoneal injections of guanethidine, an adrenergic neuron blocking agent, on selected functional parameters of the rat pineal gland which are known to be under sympathetic influence. The reliability of the method was demonstrated by the clear enophthalmus developed by experimental animals. However, neither the numbers of synaptic ribbons nor melatonin synthesis differed between treated and control rats, both parameters exhibiting the nocturnal increase seen in intact animals. These results are in striking contrast to those obtained upon chemical sympathectomy with 6-hydroxydopamine or surgical superior cervical ganglionectomy. We conclude that guanethidine is not capable of sufficiently removing noradrenergic influence from the rat pineal gland, and that this substance is thus inferior to other experimental methods of sympathectomy.  相似文献   

11.
12.
Summary The relationship between the pineal gland and the pituitary gland was investigated in male rats. The results indicate that the hypothalamo-adenohypophysial-gonadal axis is affected by the pineal gland, but the appearance of castration cells following gonal ablation may be only slightly modified by alterations in pineal gland function.  相似文献   

13.
M Shiino  K Yamauchi 《Experientia》1984,40(9):1006-1008
The relationship between the pineal gland and the pituitary gland was investigated in male rats. The results indicate that the hypothalamo-adenohypophysial-gonadal axis is affected by the pineal gland, but the appearance of castration cells following gonad ablation may be only slightly modified by alterations in pineal gland function.  相似文献   

14.
Leptin is an adipocyte-derived hormone involved in a myriad of physiological process, including the control of energy balance and several neuroendocrine axes. Leptin-deficient mice and humans are obese, diabetic, and display a series of neuroendocrine and autonomic abnormalities. These individuals are infertile due to a lack of appropriate pubertal development and inadequate synthesis and secretion of gonadotropins and gonadal steroids. Leptin receptors are expressed in many organs and tissues, including those related to the control of reproductive physiology (e.g., the hypothalamus, pituitary gland, and gonads). In the last decade, it has become clear that leptin receptors located in the brain are major players in most leptin actions, including reproduction. Moreover, the recent development of molecular techniques for brain mapping and the use of genetically modified mouse models have generated crucial new findings for understanding leptin physiology and the metabolic influences on reproductive health. In the present review, we will highlight the new advances in the field, discuss the apparent contradictions, and underline the relevance of this complex physiological system to human health. We will focus our review on the hypothalamic circuitry and potential signaling pathways relevant to leptin’s effects in reproductive control, which have been identified with the use of cutting-edge technologies of molecular mapping and conditional knockouts.  相似文献   

15.
The skin, the largest organ of the body, functions as a barrier between the body proper and the external environment, as it is constantly exposed to noxious stressors. During the last few years, the concept of an interactive network involving cutaneous nerves, the neuroendocrine axis, and the immune system has emerged. The neuroendocrine system of the skin is composed of locally produced neuroendocrine mediators that interact with specific receptors. Among these mediators are neuropeptides, including members of the galanin peptide family--galanin, galanin-message-associated peptide, galanin-like peptide, and alarin--which are produced in neuronal as well as nonneuronal cells in the skin. Here we review the expression of the galanin peptides and their receptors in the skin, and the known functions of galanin peptides in different compartments of the skin. We discuss these data in light of the role of the galanin peptide family in inflammation and cell proliferation.  相似文献   

16.
Although dopamine is considered the major hypothalamic controller of prolactin release from the anterior pituitary gland, there is evidence that a yet to be discovered prolactin releasing factor (PRF) also exists in brain. Recently, two peptides were isolated, products of the same prohormone, that were reported to have significant prolactin-releasing activity. These peptides, called prolactin releasing peptides, are not accepted by all investigators to be in fact PRFs. Instead, it appears that their widespread distribution in brain and the presence of receptors for the peptides in sites unrelated to neuroendocrine function are the basis for a variety of central nervous system action including activation of the autonomic nervous system. Thus, these peptides may not be PRFs, but instead neuroactive agents that are involved in many brain circuits with divergent functions.  相似文献   

17.
Summary In the dog and guinea-pig submandibular glands kallikrein seems to be present in the striated duct cells. Following sympathetic nerve and in vivo isoproterenol stimulation of the dog and guinea-pig submandibular gland respectively, there is a reduction of kallikrein concentration. Ultrastructurally this reduction corresponds to the decrease of straited duct secretory granules in both species. Parasympathetic stimulation also causes some release of kallikrein from both species.Supported by Dean's M.R.C. grant to the College of Dentistry.  相似文献   

18.
Summary Striking cytological features of the nonmalignant human mammary gland are reported. The most important of them are 1. In gynecomastia, epithelial cells produce secretion like the epithelial cells of dysplasic and tumoral female mammary gland. 2. In pregnancy, the lipid synthesis appears earlier than the protein synthesis. 3. Lamellar osmiophilic inclusions have been found within myoepithelial cells in two cases.  相似文献   

19.
Common Molecular Mechanisms of Mammary Gland Development and Breast Cancer   总被引:3,自引:0,他引:3  
The mammary gland undergoes major developmental changes during puberty and pregnancy. It is thought that stem cells drive mammary gland development during puberty and are responsible for tissue maintenance as well as the major growth and remodelling that occurs with every pregnancy. The use of sophisticated cell separation procedures has facilitated the prospective isolation of mammary epithelial stem and differentiated cell subpopulations from the mouse mammary gland, while studies of primary human breast cancers have described sub-populations of tumourigenic cells capable of initiating tumour growth in immuno-compromised mice. These potential tumour 'stem cells' constitute an important therapeutic target population with respect to cancer therapy, as these are likely to be the cells which maintain tumour growth. Understanding the origin of these cells, their relationship to breast cancer subtypes, and how and why they differ from normal breast stem cells will lead to a revolution in tumour understanding, treatment and prevention. (Part of a Multi-author Review).  相似文献   

20.
Summary In order to obtain more information on the methylating capacity of the pineal gland, a method determining the formation of different 5-methoxyindoles in the pineal gland was developed. The method depends on measuring the incorporation of labelled methyl groups into the various hydroxyindoles present in the pineal gland, after incorporation of pineal tissue with labelled S-adenosyl methionine. Hydroxyindoles were not added to the incubation medium. After incubation thin-layer chromatography was performed with pineal tissue together with the incubation medium; the spots were scraped and counted.The authors wish to express their gratitude to Prof. Dr. J.C. van de Kamer and Dr F.C.G. van de Veerdonk for their stimulating interest in these studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号