首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文在前文工作的基础上,导出了键强度与ML_k型分子中央原子的键轨道中s轨道成份的一般关系式。讨论了键强度随s轨道成份的变化规律。结果表明,对于一定的杂化类型,只要s轨道成份一定,键强度就完全确定了。这为诸多揭示化学键性质与s轨道成份的关系式提供了最大重迭法理论基础上的论证。同时还得到了最佳杂化态及sp—sp~2—sp~3典型杂化的键强度顺序规律的正确结论。  相似文献   

2.
一、引言1931年Pauling提出原子轨道杂化理论时,为了说明乙烯的cc双键的本性,还提出弯键的概念。他认为乙烯的碳原子轨道是sp~3杂化的,两个碳原子各以两个sp~3杂化轨道相互重叠组成两支弯键。另一方面,Coulson则认为乙烯的碳原子轨道是sp~2杂化的,两个碳原子各以一个杂化轨道重叠组成一支σ键;各以一个未杂化的P轨  相似文献   

3.
研究分子的几何构型是化学结构理论的重要组成部分。杂化轨道理论关于分子几何构型的说明,给人们留下了深刻的印象。sp杂化形成直线型分子,sp~2杂化形成平面三角型分子,sp~3杂化形成四面体型分子,dsp~2杂化  相似文献   

4.
对于s—p 杂化,本文直接论证了各杂化轨道间的正交关系,就是两矢量间的垂直关系。即使是四维空间中sp~3杂化的情况,也可以算出或画出任二sp~3矢量间的90°夹角.关键在于讨论正交关系时,总可以撇开其他的矢量,任取二个矢量进行考察,使问题得以简化.各杂化轨道的极大值指向之间不相互垂直的原因,就在于s 轨道无确定的指向.文中定义了一个“翘起角”以说明空间关系,进一步明确了键角关系的计算方法,原则上仅决定于不含s 成份(纯p 轨道)的矢量关系。  相似文献   

5.
sp~2杂化是碳碳成键的重要方式之一,利用其三重对称空间构型可以得到稳定的石墨结构和亚稳定的富勒烯、纳米碳管、石墨烯等碳纳米结构;未参与杂化的电子形成游离的π键,使得以上材料具有较好的电子导电性或其他独特的电学性质.因其优异的物理、化学、生物等特性,sp~2杂化碳材料,尤其是sp~2杂化纳米碳材料引起了巨大关注,有望在电子、能源、生物医疗、制药、功能材料等领域得到广泛应用.在已经进行的众多研究中,经常需要把上述碳纳米材料进行组装、构建成三维材料,从而在更大的尺度和空间中体现纳米基元的优异特性.本文综述了基于sp~2杂化的三维碳材料的最新进展,以构建方式和构建基元之间的相互作用为出发点进行相关评述.  相似文献   

6.
基于B3LYP/Lanl2dz水平对团簇Sc_3BP的6种优化构型成键方式和磁学性质进行研究。通过对各优化构型的总态密度、分波态密度、轨道未成对电子数、磁矩及自旋态密度等的分析,结果表明:B-P键的形成是由B—2s和P—3s轨道的s-s杂化导致的,Sc-P、Sc-B键的形成有三种杂化方式:s-d-p-p杂化、s-p-d-p-p杂化和s-d-s-pp杂化。Sc—3d态和Sc—3p态密度存在交叉重叠,形成d-p强杂化作用。构型越相似,态密度分布及在各处的贡献就越相近。s、p、d轨道中成单电子对团簇的磁性都有贡献,其中Sc—3d轨道是主要贡献者。非金属原子P的引入导致团簇磁性的下降。  相似文献   

7.
为深入研究团簇V_3B_2中成键方式及磁学性质,基于密度泛函理论(density functional theory,DFT)B3LYP/Lanl2dz水平对团簇V_3B_2进行全参数优化,对优化构型的轨道杂化和电子结构进行了系统的研究。基于总态密度及分波态密度的分析发现团簇V_3B_2所有存在的稳定构型中,V—B键的形成主要是V-3p、V-3d、B-2p的p-d-p杂化,与文献报道的p-d杂化及s-p-d杂化有所不同,且进一步的研究发现B-2p、V-3d、V-4s的p-d-s杂化及B-2s、V-4s的s-s杂化也对该键的形成有一定贡献,至今未见文献报道。基于轨道自旋态密度的磁性分析表明B的掺杂导致了团簇磁性的下降,团簇磁矩基本上是由V-3d轨道中未成对电子贡献。  相似文献   

8.
在无机化学教学中,轨道杂化理论是讨论多原子分子几何构型的一种重要工具。学生在学习这一内容时,常常提出:为什么HgCl_2与CO_2中的Hg和C采取SP杂化,而SnCl_2与SO_2中的Sn和S却采取SP~2杂化?在推测多原子分子的杂化态时,有没有通用的判据或方法?本文仅就这一问题提出一些粗浅的看法。供教学参考。  相似文献   

9.
在s-p型杂化中,杂化指数不表示参与杂化的原子轨道数,它仅表示杂化轨道中的s成分和p成分.杂化指数决定中心原子可能有的杂化态和分子的空间构(造)型.  相似文献   

10.
运用量子化学方法,探究铜催化苯并环丁烯醇碳-碳键断裂的反应机理.采用密度泛函方法,以[Cu(OH)(cod)]_2为催化剂,研究环丁烯醇C(sp~3)-C(sp~3)键和C(sp~2)-C(sp~3)键断裂反应机理,分析C(sp~3)-C(sp~2)和C(sp~3)-C(sp~3)杂化强度的热力学信息,比较C(sp~3)-C(sp~2)和C(sp~3)-C(sp~3)裂解过程.  相似文献   

11.
为对原子簇Mn_3BP的成键方式及其磁学特性进行分析,从轨道杂化角度研究其成键方式,从电子结构角度研究其磁性。研究表明:除构型5(4)、2(2)和4(2)外,其余构型B、P原子间均存在s-s和p-p杂化;p-d-p-p和p-p-p强杂化是导致各构型Mn-P和Mn-B成键较强的原因之一。结构相似的团簇构型,其态密度分布及在各处的贡献也相近。团簇的磁性主要由Mn-3d轨道成单电子贡献。研究发现,团簇构型的s轨道的电子分布在能量0eV附近出现了电子自旋状态的转变。非金属原子B、P使团簇的磁性降低,四重态构型的磁性均高于二重态。  相似文献   

12.
基于拓扑学原理、DFT和B3LYP/Lanl2dz对原子簇V_3BP进行全过程优化,取能量相对较低的8种稳定构型,对其电子结构和轨道杂化进行系统研究。结果发现:P—B键的形成是由B-2s和P-3s轨道的s-s杂化导致的,而V-3p、V-3d、B-2p轨道的p-d-p杂化和V-3p、V-3d、P-3p轨道的p-d-p杂化导致了V-B、V-P键的形成。团簇V_3BP中还存在p-d-p-p杂化。团簇构型越相似,其态密度分布及在各处的贡献就越相近。V-3d轨道成单电子是原子簇磁性的主要形成来源;团簇构型p轨道未配对电子对构型1~(4)、1~(2)、2~(2)与3~(2)的磁性有一定贡献,对其他构型磁性贡献较小;s轨道成单电子所起贡献同样很小。此外,B、P原子的掺杂致使团簇的磁性降低。  相似文献   

13.
本文以 Sp~2,dsp~2,dsp~3杂化为例,介绍了一种推求杂化轨道的群论方法。在这种方法中,需要知道一组杂化轨道中某一杂化轨道的具体形式。利用本文公式(5)(6)和其他一些方法很容易确定一组杂化轨道中某一杂化轨道的具体形式。又由于原子轨道是正交归一化的,所以矩阵之Ω_(ij)很容易求解。  相似文献   

14.
掺硼金刚石是一种理想的燃料电池氧还原反应非金属催化剂阴极材料.报道了掺硼金刚石中硼含量以及sp~2杂化的石墨相含量与氧还原反应电位、电流密度之间的关系.研究结果表明,掺硼金刚石中一定含量的硼对催化氧还原反应活性有积极作用.随着硼含量的增加,氧还原反应电位无明显变化,反应活性先增大后减小,变化规律与催化位点和台阶原子密度两个因素有关.sp~2杂化石墨相有利于氧还原反应活性电位向正向移动.  相似文献   

15.
在“关于多原子分子的中心原子杂化态的推测方法”一文中,笔者曾根据价层电子对互斥理论和杂化轨道理论归纳、总结,论述了三种推测主族元素为中心原子的杂化态的方法。但是,其方法不能完全应用于推测络合物的中心体(付族金属离子)的杂化态。本文在文献[1]的基础上,根据络合物在形成结构匀称的稳定构型过程中,可以通过配位数(L数)、配位体的电负性(X)、中心体(M)的氧化态和电子组态d~n对杂化方式  相似文献   

16.
本文根据轨道性格、提出了构造对称性匹配的多面体分子轨道、中心原子本征态、杂化轨道和定域分子轨道以及计算群重迭积分的统一方法。在这方法中,轨道性格用转动矩阵元表示。  相似文献   

17.
硫酸是三大强酸之一。由于它具有独特的性质,在化学工业中作为重要的基本化工原料而广泛应用。本文拟就中学化学教学的有关问题谈谈硫酸的结构和性质。 1.硫酸的结构 硫酸分子中的SO_4原子团是四面体结构。其中硫酸原子以SP~3杂化形成四个杂化轨道,其中两个杂化轨道为未成对电子占有,另外两个杂化轨道为孤对电子占有。两个未成对电子轨道和两个氧原子的2P轨道形成两个σ共价单键;两个孤对电子分别提供给另外  相似文献   

18.
本文根据文献[2]求解p、d轨道在配位场中分裂.再通过求极大值,确定分裂后的每类轨道极大值的方向,然后就可选择在杂化轨道方向上有极大值的轨道集合作为构成杂化轨道的原子轨道的基,根据归一化条件、能量近似原则进行组合,即可确定构成杂化轨道的原子轨道.  相似文献   

19.
基于碳原子的sp~2杂化理论和能带理论,运用紧束缚近似方法计算了石墨烯的能带结构,分析了石墨烯二维电子气的性质.  相似文献   

20.
结合[Ag(NH3)2]+、[Zn(NH3)4]2+、IO5-6、IF-4等多个案例分子的结构,讨论了主族元素原子与过渡金属元素原子作为中心原子时的杂化轨道差异。结果表明:1 )中心原子属于主族元素时,杂化轨道中可以尽量多地填充孤电子对;而中心原子属于过渡金属时,杂化轨道中一般不能填入孤电子对。 2 )中心原子属于主族元素时,周围的价层电子对数量与杂化轨道数量一致;而中心原子属于过渡金属时,周围的价层电子对数量一般多于杂化轨道数量。研究结果有助于加深对杂化轨道本质的理解。
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号