首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 38 毫秒
1.
在Gleeble-1500热模拟试验机和UTM5305实验机上以不同的变形条件对AZ31镁合金进行高温热变形试验,研究该材料在高温热变形过程中的真应力应变。研究结果证明:在变形过程中的AZ31镁合金的真应力随应变速率增大、变形温度降低而升高。在压缩变形过程中的真应力峰值、真应变和动态再结晶与拉伸变形过程相比有明显差异;该镁合金热变形过程中的真应力为用包含Arrhenius项的Zener-Hollomon参数来描述,其压缩拉伸变形激活能分别为132.38 kJ/mol和Q=255.26 kJ/mol.  相似文献   

2.
采用Gleeble-1500型热模拟机,对AZ61镁合金进行高温压缩实验,分析该合金在不同变形温度与应变速率条件下的压缩流变应力.研究AZ61镁合金在热变形时,流变应力与变形温度、应变速率之间的关系,并建立相应的流变应力模型.结果表明,AZ61镁合金在高温压缩变形时,当变形温度一定时,流变应力随应变速率的增大而增大;而当应变速率一定时,流变应力随变形温度的升高而降低.AZ61镁合金的热变形过程均表现出较明显的动态再结晶特征,其流变应力的变化规律主要受加工硬化和再结晶软化两者机制的共同作用.在热变形下,AZ61镁合金峰值流变应力可以用双曲正弦模型来进行较好的描述.  相似文献   

3.
在变形温度为523~673 K、应变速率为0.001~1 s-1的条件下,采用Gleeble-1500热模拟试验机对ZK60镁合金的热压缩变形行为进行研究。通过引入应变对ZK60镁合金流变应力本构方程进行改进。研究结果表明:ZK60镁合金流变应力随着变形温度升高和应变速率降低而减小。其高温压缩流变应力曲线可描述为加工硬化、过渡、软化和稳态流变4个阶段,但在温度较高和应变速率较低时,过渡阶段不明显;采用改进后的本构方程预测的流变应力曲线与实验所得曲线较吻合。  相似文献   

4.
AZ31镁合金变形行为的热/力模拟   总被引:3,自引:1,他引:3  
采用GLEEBLE-1500热/力模拟机在变形温度为423~723K,应变速率为0.01~10s^-1,最大变形量为60%的条件下对铸态AZ31镁合金进行热/力模拟研究,并结合热变形后显微组织,分析合金力学性能与显微组织之间的关系。研究结果表明:应变速率和变形温度是影响变形激活能的关键参数;当变形温度一定时,流变应力和应变速率之间呈线性关系,合金的变形激活能在523~573K时变化不大,而在大于573K时增大较快,可用包含Arrheniues项的参数Z描述AZ31镁合金热压缩变形的流变应力行为。  相似文献   

5.
粉末冶金AZ91镁合金的高温压缩流变应力行为   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟机,对快速凝固粉末冶金AZ91镁合金在应变速率为0.001~1 s-1,变形温度为250~400 ℃条件下的流变应力行为进行了研究.结果表明:快速凝固粉末冶金AZ91镁合金热压缩变形的流变应力受到变形温度和应变速率的强烈影响.流变应力主要呈现幂指数关系.其热变形应力指数n为8.7,热变形激活能Q为132.6 kJ/mol.  相似文献   

6.
AZ31镁合金板温拉伸变形行为的研究   总被引:1,自引:0,他引:1  
通过采用单向拉伸实验, 在DNS200微机控制电子万能试验机上测定了AZ31变形镁合金板料在不同拉伸速度、不同温度下的力学性能,并分析了其特点和原因.利用实验得出的应力应变数据,建立了Fields-Backofen流变应力模型,模型计算的应力应变曲线与实验所得的数据在290~573 K范围内峰值应力出现之前基本吻合.  相似文献   

7.
变形镁合金高温变形流变应力分析   总被引:23,自引:0,他引:23       下载免费PDF全文
AZ31B镁合金是应用最广泛的变形镁合金,研究它在高温下的流变应力对热加工过程有很大的实际意义。采用实验法研究了AZ31B镁合金高温高应变速率压缩时流变应力,结果表明镁合金在573-723K、应变速率为0.01-5s^-1进行高温压缩的情况下,变形温度和应变速率对流变应力有显著的影响,流变应力随应变速率的升高和变形温度的降低而升高,其稳态流变应力同Zener-Hollomon参数的对数之间呈线性关系。引入Zener-Hollomon参数的指数形式正确描述AZ31B镁合金热压缩变形时流变应力同变形温度和应变速率之间的关系。  相似文献   

8.
采用二维弹塑性大变形热力耦合有限元法(FEM),对半连续铸造AZ31镁合金热轧开坯过程第一道次进行模拟,分析变形区内轧件的应力场、应变场的分布及整个热轧过程中的温度场的变化规律.实验结果表明:在轧件变形区内,等效应力沿轧制方向逐渐增大,在中性面附近达到最大值54.1 MPa,随后又逐渐减小;靠近轧件表层σ_x为压应力,靠近心部为拉应力,在变形区σ_y主要为压应力,由表面到中心σ_y逐渐减小;等效应变沿轧制方向逐渐增大,在轧件出口处达到最大值0.253;在整个轧制过程中,轧件内部节点的温度变化缓慢,而表面节点的温度变化剧烈,轧制完成后,表面温度从500℃降低到467℃,中部温度从500℃升高到503.1℃,心部温度从500℃升高到502.2℃.  相似文献   

9.
异步轧制AZ31镁合金板材组织   总被引:1,自引:0,他引:1  
对不同总变形量、道次压下量、轧制温度以及轧制路径等工艺条件下所制备的AZ31镁合金板材的组织进行研究。研究结果表明:异步轧制有利于板材的晶粒细化,其晶粒粒度约为8.9μm,明显小于常规轧制板材的13.2μm;当总变形量由40%增大到80%时,晶粒粒度从40μm左右减小到30μm左右,出现了较多的孪晶;当道次压下量由5%增加到20%时,晶粒粒度从40μm左右减小到10~20μm,孪晶数量也随之减少;当温度由350℃升高到400℃时,晶粒粒度由20μm左右下降到10μm,且大部分晶粒为等轴晶;轧制路径的改变,使板材中的显微组织和孪晶数量产生改变,C路径中的晶粒细小,粒度约为10μm,D路径中的孪晶数量最少。  相似文献   

10.
利用Gleeble-3500热模拟试验机,对均匀化退火处理后的铸态AZ61镁合金进行了等温热压缩变形实验,研究了合金在变形温度为220℃~380℃、应变速率为0.001 s-1~10 s-1条件下的热变形行为和组织演变特征,并基于双曲正弦模型建立了合金的本构模型.研究了Zener-Hollomon参数对热压缩变形组织演...  相似文献   

11.
为了确定AZ31镁合金轧制工艺参数,利用Gleeble--3500热模拟试验机进行热压缩试验以测试其热变形行为,并根据动态材料模型理论得到其热加工图.当变形温度为380~400℃、应变速率为3~12 s-1时,功率耗散效率大于30%,属于动态再结晶峰区;在该区域进行异步轧制变形退火处理后得到平均晶粒直径为2.3μm的细晶组织,抗拉强度为322.7MPa,延伸率为19.6%.当应变速率大于15 s-1时,属于流变失稳区,250~300℃低温加工时合金的塑性显著降低,350~400℃高温加工时合金出现混晶组织.  相似文献   

12.
变形参数对AZ31镁合金变形抗力的影响   总被引:1,自引:1,他引:1  
利用Gleeble-1500热模拟试验机对AZ31镁合金在变形温度为250~400℃、变形速率为0.5~3.0s-1下进行热变形模拟实验,得到了AZ31镁合金真实应力-真实应变曲线,并通过光学显微镜观察了试样在变形中的微观组织.结果表明,动态再结晶是该实验条件下晶粒细化的主要机制,变形参数影响了再结晶的程度.  相似文献   

13.
The automatic tungsten-inert gas welding (ATIGW) of AZ31 Mg alloys was performed using a six-axis robot. The evolution of the microstructure and texture of the AZ31 auto-welded joints was studied by optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction. The ATIGW process resulted in coarse recrystallized grains in the heat affected zone (HAZ) and epitaxial growth of columnar grains in the fusion zone (FZ). Substantial changes of texture between the base material (BM) and the FZ were detected. The {0002} basal plane in the BM was largely parallel to the sheet rolling plane, whereas the c-axis of the crystal lattice in the FZ inclined approximately 25° with respect to the welding direction. The maximum pole density increased from 9.45 in the BM to 12.9 in the FZ. The microhardness distribution, tensile properties, and fracture features of the AZ31 auto-welded joints were also investigated.  相似文献   

14.
The rolling of metal sheet often leads to strong contamination of the resulting surface. The present work reports the effects of the surface contamination remaining after rolling of AZ31 Mg alloy on plasma electrolytic oxidation(PEO) treatment of the resulting sheet material. Results indicate that most of the contaminants on the surface of as-rolled AZ31 Mg alloy are removed in the early stages of PEO process. The contaminations slightly influence the phase composition of PEO coating. Non-uniform distribution of contaminations results in aggregation of pores on the surface of PEO samples. On the bare substrate the contaminations are responsible for poor wear and corrosion resistance but final PEO coatings reveals similar performance on contaminated substrate compared to the abraded one. A self-cleaning property of the PEO and possibility of one step process,avoiding pre-cleaning stages, is suggested.  相似文献   

15.
研究间断变形工艺对AZ31镁合金超塑性的影响.结果表明,当温度为400~440℃、应变速率小于5×10-4 s-1时,间断变形工艺可以显著提高AZ31镁合金的超塑性.计算了空洞体积分数与空洞数量的关系.结果表明,空洞体积分数与空洞数量呈正比.对拉伸试样断口形貌的分析表明,间断变形减少了空洞数量,因而减小了空洞体积分数,提高了超塑性伸长率.  相似文献   

16.
In this study, the hyperbolic-sine type constitutive equation was used to model the flow stress of annealed AZ61 magnesium(Mg) alloys. Hot compression tests were conducted at the temperatures ranging from 250 1C to 450 1C and at the strain rates ranging from 1 10–3s 1to 1 s 1on a Gleeble-3500 thermo-simulation machine. Constitutive equations as a function of strain were established through a simple extension of the hyperbolic sine constitutive relation. The effects of annealing heat treatments on the variations in constitutive parameters with strain were discussed. The hot compressive flow curves exhibited typical features of dynamic recrystallization. Multiple peak flow curves were observed in the annealed specimens upon testing at a strain rate of 1 10 1s–1and at various temperatures. Variations in constitutive parameters with strain were related to flow behavior and dependent on the initial conditions of the test specimens. The flow stresses of annealed AZ61 Mg alloys were predicted well by the strain-dependent constitutive equations of the hyperbolic sine function under the deformation conditions employed in this study.  相似文献   

17.
采用了100T挤压机对AZ31镁合金在不同温度不同挤压比下双向挤压成型。结果表明,挤压比为4.5时,显著地细化镁合金晶粒,晶粒尺寸可由铸态的400μm减小到挤压态的6μm;挤压比为10.125时,晶粒尺寸可以减小到3μm;变形材料的硬度、伸长率、压缩率和屈服强度值有了很大程度的提高,随着挤压温度的升高,硬度、压缩率、伸长率和屈服强度值呈降低趋势(250℃除外)。  相似文献   

18.
An investigation on the plastic behavior of AZ31 magnesium alloy under ultrasonic vibration (with a frequency of 15 kHz and a maximum output of 2 kW) during the process of tension at room temperature was conducted to reveal the volume effect of the vibrated plastic deformation of AZ31. The characteristics of mechanical properties and microstructures of AZ31 under routine and vibrated tensile processes with different amplitudes were compared. It is found that ultrasonic vibration has a remarkable influence on the plastic behavior of AZ31 which can be summarized into two opposite aspects: the softening effect which reduces the flow resistance and improves the plasticity, and the hardening effect which decreases the formability. When a lower amplitude or vibration energy is applied to the tensile sample, the softening effect dominates, leading to a decrease of AZ31 deformation resistance with an increase of formability. Under the application of a high-vibrating amplitude, the hardening effect dominates, resulting in the decline of plasticity and brittle fracture of the samples.  相似文献   

19.
变形条件对AZ31镁合金冷压缩过程中孪生的影响   总被引:1,自引:0,他引:1  
在新三思拉伸试验机CMT-5150上对均匀态AZ31镁合金进行室温压缩试验,研究了在变形量分别为5%、7.5%、10%、12.5%、15%以及变形速率分别为0.5、1、2、4mm/min时压缩变形组织中孪晶的形态与分布。结果表明:在压缩变形初期,只有少量晶粒内出现孪晶,孪晶较宽;而在压缩变形末期,孪晶几乎分布于所有晶粒中,且出现了细而长的孪晶。孪晶分数随变形程度的增大而上升。随着变形速率的增大,孪晶形态变细,且其密度增大,试样的屈服强度和抗压强度都升高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号