共查询到19条相似文献,搜索用时 93 毫秒
1.
针对间歇过程的时段划分问题,提出了一种滑动时间窗加权MPCA方法,利用了相邻观测数据所蕴含过程信息的相关性,降低了过程扰动、观测噪声以及多阶段间过渡过程等不确定性因素对时段划分的影响,进而改善了间歇过程的监测效果。将所提出的方法应用于青霉素发酵过程阶段划分和监测,实验结果表明,所提出方法与常规MPCA相比,能够得到更好的效果。 相似文献
2.
过程安全对于间歇过程生产具有重要意义,为提高间歇过程生产安全性,提出一种基于改进粒子群算法(AMWPSO)优化长短期记忆网络(LSTM)的间歇过程故障预测模型AMWPSO-LSTM。针对LSTM中的神经元个数、迭代次数、学习率等参数需要人为设置的问题,采用AMWPSO对这些参数进行自动寻优。AMWPSO在原有粒子群优化算法(PSO)中融入了自适应变异和非线性递减惯性权重,提高了PSO的参数寻优能力。由于间歇过程具有多阶段性,因此先根据模糊C均值聚类(FCM)方法对间歇过程进行阶段划分,再利用Pearson相关系数对各阶段实验数据进行相关性分析,以降低系统变量的维数,并建立各阶段T2统计量控制限作为系统是否发生故障的指标。实验以青霉素发酵过程数据为例,建立基于AMWPSO-LSTM 的多阶段故障预测模型,并将该模型的预测结果与基于LSTM的多阶段预测模型、基于PSO-LSTM的多阶段预测模型的预测结果进行比较,结果表明,基于AMWPSO-LSTM 的多阶段故障预测模型可取得较高的预测准确度。 相似文献
3.
4.
针对多向主元分析(MPCA)在间歇过程故障监测应用中经常面临的分段不准确问题,提出了一种新的基于支持向量数据描述(SVDD)的两步分段方法,从而提高分段的准确性和故障监测精度。第一步分段采用机理知识与现场数据相结合的思想,对MPCA模型的负载矩阵进行修正。将采样时间引入负载矩阵中,增大模型差异性,从而避免了故障数据导致的分段错误。第二步利用支持向量数据描述方法将初步划分的各子时段进一步细分,严格区分各子时段中的稳定与过渡时段,进一步提高分段的准确性。同时,给出基于上述分段技术的间歇过程在线故障监测算法,可以实时地监测现场数据。最后将该方法应用于青霉素间歇过程的在线监测,结果表明:该方法能够细致刻画过渡过程信息,比常规MPCA方法能够更早地检测出故障,并避免了误报。 相似文献
5.
模糊C-均值聚类(FCM)对初始值很敏感,易于陷入局部极小点而不能搜索到全局的聚类中心,遗传算法是一种通过模拟自然进化过程的搜索最优解的方法.因此,将FCM算法引入遗传算法的进化中,代替原来的交叉操作.实验结果表明,新方法明显优于传统 FCM算法. 相似文献
6.
往复式压缩机气阀是整个机体中故障率最高的部件,针对其故障模式复杂难以辨识的特点,选取部分气阀振动信号的时域和频域参数作为特征参数,采用C-means模糊聚类的方法对气阀故障和运行状态进行评判,挖掘出了故障特征,并给出了诊断实例。 相似文献
7.
化工过程有很多过渡过程,例如开停车、不同稳态间转换和间歇过程.这些过程的非线性很强,变化范围大,需要有经验的操作员连续监控.近年来对过渡过程的故障诊断比较通用的方法是多变量统计方法,其优点是能快速检测异常的发生,但是用贡献图分析方法的诊断效果往往不够理想.本文结合主元分析和动态时间规整的方法,提出了一个开车过程的混合故障诊断策略,提高了故障诊断效率.一个实验室规模的精馏塔开车过程的在线故障诊断应用实例表明:该策略具有比较好的早期故障诊断效果. 相似文献
8.
针对大部分多阶段间歇过程,质量多数难以在线测量与控制问题,提出一种新颖的在线质量预测方法,基于子时段的MPLS质量预测方法.首先,采用聚类分析方法对间歇过程时间片矩阵PCA负载矩阵进行分类,依据过程变量相关性的变化,过程被分成几个操作阶段,然后,定出与质量变量最相关的阶段,在该阶段建立sub-MPLS在线质量预测模型,另外,还提出一种闭环质量控制方案.在一个典型的多阶段间歇过程-注塑过程的应用结果表明了所提出方法的有效性. 相似文献
9.
多向主元分析(MPCA)是间歇过程最常用的监控方法,但缺点是需要对未来测量值进行估计。针对这一问题,提出了基于不同展开方式上的独立元分析(ICA)的在线监控方法。在测量数据含有非高斯潜隐变量的情况下,ICA是比PCA更有效的特征提取算法。获得独立元(ICs)后,将一种新的基于ICA的混合相似因数分析用于间歇过程的故障诊断中。通过在青霉素生产过程的成功应用,验证了所提出方法的可行性和有效性,具有比较好的监测效果及满意的故障识别能力。 相似文献
10.
基于多向Fisher判据分析的间歇过程性能监控 总被引:8,自引:0,他引:8
针对传统的间歇过程监控方法,在建模时只利用正常工况下的数据,其故障诊断能力并不令人满意的问题,提出了多向Fisher判据分析(MFDA:Multiway Fisher Discriminant Analysis)方法,用于间歇过程的监控.该算法同时利用正常工况和故障条件下的数据进行建模,其故障诊断能力要优于MPCA(Multiway Principal Component Analysis),在故障检测的同时也实现了故障的诊断.通过对实际工业链霉素发酵过程数据分析,表明该算法是可行的,可以获得较满意的故障诊断结果. 相似文献
11.
MWMPCA方法及其在间歇过程监控中的应用 总被引:10,自引:0,他引:10
针对传统的多向PCA(Principal Component Analysis)模型间歇过程监控的缺点,提出了一种移动窗多向主元分析(MWMPCA:Moving Window Multi-way Principal Component Analysis)模型.与MPCA方法比较,MWMPCA可很好地监控间歇过程操作的稳定性,在实时监控新的间歇过程时,只需利用已收集到的数据信息,同时还可根据实际反应情况调整主元的选取个数,以得到更好的监控性能. 相似文献
12.
灰色关联聚类是灰色系统分析的重要研究领域.现有的灰关联聚类方法在处理不同长度序列数据时,通常采用补齐或删除数据方式进行处理,增加了系统的不确定性.在动态时间弯曲距离基础上,提出了一种新的灰关联聚类方法,通过计算序列间距离矩阵的最短路径来度量相似程度,最终完成序列的灰关联聚类.该方法无需对序列数据进行人工干预,具有更强的鲁棒性.实验结果表明,在处理不同长度数据序列时,聚类结果更为准确. 相似文献
13.
针对间歇过程数据存在的非线性和动态特性导致故障检测效果不佳的问题,提出一种基于滑动窗(sliding window,SW)的多向差分正交邻域保持嵌入(multiway differential orthogonal neighborhood preserving embedded,MDONPE)算法.首先对间歇过程数据... 相似文献
14.
针对邻域保持嵌入(NPE)算法只通过欧氏距离挑选近邻带来的特征提取不充分导致故障诊断效果不佳的问题,将扩散距离(DD)与NPE算法相结合,提出了一种基于扩散距离的邻域保持嵌入(DDNPE)算法的故障诊断新方法.该方法首先发掘嵌入在原始高维数据的内在流行结构,进行数据降维,然后通过学习原始数据的潜在几何结构提取本征信息,并保持数据流行上的局部结构不变,避免了NPE算法只通过欧式距离挑选邻域带来的特征提取不充分的问题,最后利用T2和SPE统计量检测故障,并用变量贡献图法诊断出故障变量.通过青霉素发酵过程仿真结果验证了所提方法的有效性. 相似文献
15.
为提高挖掘机液压系统的可靠性,提出了基于主元回归(Principal Component Regression,PCR)模型和模糊C-均值(Fuzzy C-Means,FCM)聚类的挖掘机液压系统故障诊断方法.故障诊断方法将故障诊断分成故障特征提取和故障分类两个部分.在故障特征提取中,首先确定PCR模型的输入/输出结构,通过主元分析(Principal ComponentAnalysis,PCA)的累积贡献率得到故障样本的主元数目,建立相应的PCR模型并提取回归系数作为故障特征;在故障分类中,将FCM聚类作为故障分类器,对回归系数进行分类,判断系统的故障状态.仿真试验表明,提出的故障诊断方法能有效地应用于挖掘机液压系统. 相似文献
16.
针对反浮选过程的被控对象复杂、数学模型不确定以及控制要求高等特点,提出一种基于主元分析和模糊聚类的数据预处理算法。采用模糊C均值聚类算法得到聚类中心,进行线形回归从而对过程变量数据进行了预处理。主元分析法则用采进行辅助变量的选取和输入高维向量的降维简化.针对主元变量采用径向基函数网络建立了系统经济技术指标的预测模型。根据工业实际生产数据进行的模型校验和误差分析表明,能够满足浮选过程控制的精度要求。 相似文献
17.
为了帮助发音困难者障碍者和外语学习者矫正普通话发音错误,提出基于Mel频率倒谱系数(Mel frequencycepstrum coefficient,MFCC)特征比较和模拟退火-遗传算法(simulated annealing genetic algorithm,SAGA)的普通话音素评分模型。该模型采用动态时间弯折(dynamic timewarping,DTW)算法对普通话音素进行相似度比对,并基于SAGA评分机制对发音进行自动评分。本文对比了不同优化算法(SAGA和局部优化算法)、不同DTW算法对语音评分的影响。结果发现:SAGA评分模型下的音素评分正确率大于94%,远远优于局部优化算法。此外,在SAGA评分模型下,搜索路径为平行四边形的改进DTW算法具有最优的评分结果。因此,基于MFCC和SAGA的评分模型适用于普通话音素评分。 相似文献
18.
为充分利用表征过程运行工况的数据特征信息,提高化工过程的故障检测性能,提出一种基于动态结构保持主元分析(DSPPCA)的过程故障检测方法。首先对原始数据采用变量相关性分析建立自回归模型,构建包含动态特征的数据集,进一步综合考虑主元分析法(PCA)和局部线性嵌入(LLE)流形学习算法中数据点之间的近邻关系,融合得出新的目标函数,同时,运用局部线性回归的方法获得高维样本的嵌入映射,特征提取后在特征空间和残差空间分别构造监控统计量进行故障检测。Swiss-roll数据集的降维结果及TE过程的仿真研究结果表明,DSPPCA算法可以取得较好的特征提取效果,具有较高的故障检测性能。 相似文献
19.
绝缘栅双极型晶体管(IGBT)模块是电力电子装置中关键可靠性敏感元件之一,辨识IGBT模块缺陷,是避免突发故障,增强电力电子装置可靠运行的重要举措之一。为此,笔者提出一种基于时间序列动态时间弯曲(DTW)差异的IGBT模块早期缺陷的诊断方法。该方法利用缺陷对IGBT模块门极寄生参数的影响,通过分析缺陷前后,门极电压信号序列DTW的差异,判断IGBT模块内部是否存在缺陷。实验研究结果验证了其诊断结论的正确性和实用性。 相似文献