共查询到15条相似文献,搜索用时 265 毫秒
1.
在发射信号能量有限情况下,雷达性能界定了信杂噪比(signal to interference plus noise ratio,SINR)的作用范围,而雷达波形设计就受到SINR的约束.对此,以提升认知雷达目标估计性能为目标,根据相对熵的非负性条件,从理论上推导了互信息的边界和SINR的作用阈,并在信号相关杂波环境下... 相似文献
2.
针对传统的短时客流预测方法没有考虑到时序特征中跨时段客流之间的相似性问题,提出一种改进k-means聚类算法与卷积神经网络和长短时记忆网络相结合的短时客流量预测模型k-CNN-LSTM。通过k-means算法对跨时段时序数据进行聚类,使用间隔统计确定k值,构建交通流矩阵模型,采用CNN-LSTM网络处理具有时空特征的短时客流。该模型能够对具有空间相关性的数据进行较为准确的预测。使用真实数据集对模型进行检验和参数调优,实验结果表明:k-CNN-LSTM模型较其他模型有相对较高的预测精度。 相似文献
3.
分析了常规时域编码信号用于多输入多输出(multiple-input multiple-output,MIMO)雷达发射信号无法获得良好的波形分集性能.提出了将空时二维编码技术用于MIMO雷达发射波形设计,理论分析得出该技术能有效抑制波形的互相关能量,提高回波信号的信杂比,可获得良好的波形分集性能,并分析了空时编码技术... 相似文献
4.
5.
针对目前雷达干扰识别方法存在人工特征提取难、强噪声环境下识别率不高的问题,提出了一种基于长短时记忆(long short-term memory, LSTM)网络和残差网络相结合的雷达有源干扰识别方法。输入有源压制干扰原始时域序列数据,搭建深度学习网络模型对不同干噪比下的干扰信号进行分类识别。仿真结果表明:在干噪比为0 dB的情况下,该方法对4类雷达有源干扰信号的识别准确率均高于98.3%,与单纯的残差网络和卷积神经网络(convolutional neural networks, CNN)等其他深度学习算法相比,具有更佳的网络性能,验证了该算法的有效性。 相似文献
6.
传统的雷达高分辨距离像(high resolution range profile, HRRP)序列识别方法依赖于人工特征提取, 并且现有的深度学习方法存在梯度消失问题, 导致收敛速度慢, 识别精度低。针对上述问题, 提出一种基于注意力机制的堆叠长短时记忆(attention-based stacked long short-term memory, Attention-SLSTM)网络模型, 该模型通过堆叠多个长短时记忆(long short-term memory, LSTM)网络层, 实现了HRRP序列更深层次抽象特征的提取; 通过替换模型的激活函数, 减缓了堆叠LSTM(stacked LSTM, SLSTM)模型梯度消失问题; 引入注意力机制计算特征序列的分配权重并用于分类识别步骤, 增强了隐藏层特征的非线性表达能力。模型在雷达目标识别标准数据集MSTAR上多种不同目的的实验结果表明, 所提方法具有更快的收敛速度和更好的识别性能, 与多种现有方法对比具有更高的识别率, 证明了所提方法的正确性和有效性。 相似文献
7.
针对不同工作环境中, 需要雷达同时具有多种模式和多种任务的问题, 提出了一种联合优化准则的雷达波形设计方法, 该方法综合考虑了目标与回波之间的互信息与信干噪比。在发射信号能量有限的约束条件下, 首先通过最大边缘分配算法求解最优波形, 其次讨论互信息与信干噪比的增减率, 当改变系数值时, 联合准则下的雷达信号模型既可同时提高互信息和信干噪比值, 又可根据发射需求分别优化互信息或信干噪比。最终信号模型通过一次或较少次数的观测同时完成目标参数估计、检测或识别任务, 为雷达波形优化朝着多功能模型设计提供研究依据。 相似文献
8.
针对传统调制识别算法在低信噪比下识别率不高的情况,提出双路卷积神经网络级联双向长短时记忆(two-way convolutional neural network cascaded bidirectional long short-term memory, TCNN-BiLSTM)网络的调制识别算法。首先,该算法并联不同尺度卷积核的卷积层,提取调制信号不同维度的特征。然后,级联BiLSTM层,对多维特征构建LSTM时间模型。最后,使用softmax分类器完成识别。仿真实验表明,所提算法结构在加性高斯白噪声和特定信道参数的瑞利衰落信道下,性能要优于基于传统特征和其他网络结构的识别算法。在特定信道参数的瑞利衰落信道下信噪比低至6 dB时,该算法对6种数字调制信号的识别率仍可达到92%以上。 相似文献
9.
针对旋转机械工况复杂多变、有标签样本不足而导致的故障特征提取困难等问题,提出了一种用于旋转机械故障诊断的改进深度残差网络(improved deep residual network, IDRN)。首先,采集旋转机械一维振动信号进行数据预处理;然后,在深度残差网络的基础上引入了长短时记忆(long short-term memory, LSTM)网络,其中,LSTM网络可以有效捕捉故障的时序信息;在残差块中引入Dropout层提高了故障诊断的精度和收敛速度;最后在轴承与齿轮数据集上验证本文提出方法的有效性。实验结果表明,该方法在堆叠多层网络模型时,没有出现明显的网络退化现象,与当前广泛使用的几种诊断方法进行对比实验,表现出了较高的平均诊断精度和良好的适用性。 相似文献
10.
在有限信噪比情况下,雷达对多目标的检测性能受限于参数估计精度和发射脉冲积累,而波形设计为雷达性能提升提供了自由度。本文以信噪比为约束条件,以假设概率与设计波形的加权和迭代波形发射,分阶段提出了基于单假设互信息最大化、基于多假设间互信息最小化的波形优化方法,实现了提升参数估计精度与降低发射脉冲次数的均衡处理。仿真验证了目标参数估计精度与目标检测性能间呈正相关关系,结果表明,基于双阶段互信息准则设计的波形能够快速检测多目标方位,提升目标检测性能。 相似文献
11.
低地球轨道(low earth orbit,LEO)卫星由于其传输损耗低、地面干扰小等优点成为空天地一体化网络的重要组成部分.由于星地传输链路的时延大,现有卫星通信过程无法实时地进行信息交互,导致系统无法适应信道的变化.针对这个问题,提出了基于长短期记忆(long short-term memory,LSTM)网络的信... 相似文献
12.
针对基于动力学模型的轨道预报方法对卫星自主轨道预报与大量非合作目标轨道预报中存在建模成本过高和缺少目标空间环境信息的问题,提出一种基于误差数据驱动的神经网络轨道预报方法.该方法在解析法动力学模型的基础上,使用长短期记忆神经网络对历史轨道预报的误差进行学习,预测未来短期动力学模型的预报误差,以此对预报结果进行修正.选用A... 相似文献
13.
弹道导弹主动段长周期轨迹预报能够为导弹防御系统提供早期预警信息。传统的轨迹预报方法大多集中在导弹的自由段与再入段,通过解析法、数值积分法或函数逼近法推断未来时刻目标的状态。由于弹道导弹在主动段会受到多个未知作用力的影响,其轨迹预报相比自由段与再入段更具挑战性。为此,本文提出了一种基于长短时记忆(long short-term memeory, LSTM)网络的弹道导弹主动段轨迹预报方法。首先,根据导弹主动段动力学模型与弹道参数典型取值生成用于网络训练的大规模轨迹样本;其次,设计了基于深度LSTM网络的弹道导弹主动段轨迹递归预报方法;最后,与基于数值积分法、多项式拟合及反向传播神经网络的轨迹预报方法的实验对比,表明了所提方法在主动段轨迹预报上的优越性。 相似文献
14.
针对现有通信辐射源个体识别方法预处理过程复杂及特征提取较难的问题,提出了一种基于堆栈式长短期记忆(long short-term memory, LSTM)网络的辐射源个体识别算法。该算法直接使用IQ时间序列信号训练LSTM网络,即可实现对通信辐射源个体的高效识别,避免了复杂的信号预处理过程。为使LSTM网络能更好地适用于通信辐射源个体识别,利用3层LSTM网络提取辐射源深层特征,并通过实验优化了网络参数。然后对该算法的实际应用泛化性进行了实验探究,结果表明该算法在其他辐射源数据集上也取得了较好的效果。最后,通过实验对算法进行了验证,结果表明相比于传统算法,在样本数较多时,该算法的识别准确率可以达到98%,而且简单快速智能,便于工程化与实用化。 相似文献
15.
针对现有通信辐射源个体识别方法预处理过程复杂及特征提取较难的问题,提出了一种基于堆栈式长短期记忆(long short-term memory, LSTM)网络的辐射源个体识别算法。该算法直接使用IQ时间序列信号训练LSTM网络,即可实现对通信辐射源个体的高效识别,避免了复杂的信号预处理过程。为使LSTM网络能更好地适用于通信辐射源个体识别,利用3层LSTM网络提取辐射源深层特征,并通过实验优化了网络参数。然后对该算法的实际应用泛化性进行了实验探究,结果表明该算法在其他辐射源数据集上也取得了较好的效果。最后,通过实验对算法进行了验证,结果表明相比于传统算法,在样本数较多时,该算法的识别准确率可以达到98%,而且简单快速智能,便于工程化与实用化。 相似文献