首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The DNA replication checkpoint response stabilizes stalled replication forks   总被引:62,自引:0,他引:62  
In response to DNA damage and blocks to replication, eukaryotes activate the checkpoint pathways that prevent genomic instability and cancer by coordinating cell cycle progression with DNA repair. In budding yeast, the checkpoint response requires the Mec1-dependent activation of the Rad53 protein kinase. Active Rad53 slows DNA synthesis when DNA is damaged and prevents firing of late origins of replication. Further, rad53 mutants are unable to recover from a replication block. Mec1 and Rad53 also modulate the phosphorylation state of different DNA replication and repair enzymes. Little is known of the mechanisms by which checkpoint pathways interact with the replication apparatus when DNA is damaged or replication blocked. We used the two-dimensional gel technique to examine replication intermediates in response to hydroxyurea-induced replication blocks. Here we show that hydroxyurea-treated rad53 mutants accumulate unusual DNA structures at replication forks. The persistence of these abnormal molecules during recovery from the hydroxyurea block correlates with the inability to dephosphorylate Rad53. Further, Rad53 is required to properly maintain stable replication forks during the block. We propose that Rad53 prevents collapse of the fork when replication pauses.  相似文献   

2.
To explore effects of DNA damage on cell-cycle progression in p53-deficient tumor cells, synchronized HeLa cells at G1, S and G2/M phases were treated with methyl methanesulfnate (MMS). The results showed that the MMS treatment resulted in the cell-cycle arrest or delay in all 3 phases, while the S-phase cells were the most sensitive to MMS. Further studies demonstrated that ATM-Chk2 and p38 MAPK signaling pathways were activated in all 3 phases when the cells were treated with MMS; whereas Chk1 was activated only in S phase under the drug treatment, indicating that Chk1 specifically participated in S-phase checkpoints. To analyze the role of Chk1 in S-phase checkpoints, we administered a specific Chk1 inhibitor, UCN-01, to the S-phase cells. The results showed that the S-phase cells treated with MMS+UCN-01 could enter aberrant mitosis without finishing DNA replication, indicating that Chk1 mainly functions in the DNA damage checkpoint rather than in the replication checkpoint. In addition, MMS treatment alone inhibited the accumulation of cyclin B1, a key component of M-phase CDK-cyclin complex, in the S-phase cells, whereas the inhibition of Chk1 activation resulted in the accumulation of cyclin B1 in the MMS-treated S-phase cells. This observation further supports the view that DNA-damaged S-phase cells enter abnormal mitosis when Chk1 activation is inhibited. Our results demonstrate that Chk1 is a specific kinase that plays an important role in the MMS-induced S-phase DNA damage checkpoint. As p53 is not involved in this process, Chk1 may be a potential target for p53-deficient tumor therapy.  相似文献   

3.
Katou Y  Kanoh Y  Bando M  Noguchi H  Tanaka H  Ashikari T  Sugimoto K  Shirahige K 《Nature》2003,424(6952):1078-1083
The checkpoint regulatory mechanism has an important role in maintaining the integrity of the genome. This is particularly important in S phase of the cell cycle, when genomic DNA is most susceptible to various environmental hazards. When chemical agents damage DNA, activation of checkpoint signalling pathways results in a temporary cessation of DNA replication. A replication-pausing complex is believed to be created at the arrested forks to activate further checkpoint cascades, leading to repair of the damaged DNA. Thus, checkpoint factors are thought to act not only to arrest replication but also to maintain a stable replication complex at replication forks. However, the molecular mechanism coupling checkpoint regulation and replication arrest is unknown. Here we demonstrate that the checkpoint regulatory proteins Tof1 and Mrc1 interact directly with the DNA replication machinery in Saccharomyces cerevisiae. When hydroxyurea blocks chromosomal replication, this assembly forms a stable pausing structure that serves to anchor subsequent DNA repair events.  相似文献   

4.
5.
A DNA damage checkpoint response in telomere-initiated senescence   总被引:1,自引:0,他引:1  
Most human somatic cells can undergo only a limited number of population doublings in vitro. This exhaustion of proliferative potential, called senescence, can be triggered when telomeres--the ends of linear chromosomes-cannot fulfil their normal protective functions. Here we show that senescent human fibroblasts display molecular markers characteristic of cells bearing DNA double-strand breaks. These markers include nuclear foci of phosphorylated histone H2AX and their co-localization with DNA repair and DNA damage checkpoint factors such as 53BP1, MDC1 and NBS1. We also show that senescent cells contain activated forms of the DNA damage checkpoint kinases CHK1 and CHK2. Furthermore, by chromatin immunoprecipitation and whole-genome scanning approaches, we show that the chromosome ends of senescent cells directly contribute to the DNA damage response, and that uncapped telomeres directly associate with many, but not all, DNA damage response proteins. Finally, we show that inactivation of DNA damage checkpoint kinases in senescent cells can restore cell-cycle progression into S phase. Thus, we propose that telomere-initiated senescence reflects a DNA damage checkpoint response that is activated with a direct contribution from dysfunctional telomeres.  相似文献   

6.
A single double-strand break (DSB) induced by HO endonuclease triggers both repair by homologous recombination and activation of the Mec1-dependent DNA damage checkpoint in budding yeast. Here we report that DNA damage checkpoint activation by a DSB requires the cyclin-dependent kinase CDK1 (Cdc28) in budding yeast. CDK1 is also required for DSB-induced homologous recombination at any cell cycle stage. Inhibition of homologous recombination by using an analogue-sensitive CDK1 protein results in a compensatory increase in non-homologous end joining. CDK1 is required for efficient 5' to 3' resection of DSB ends and for the recruitment of both the single-stranded DNA-binding complex, RPA, and the Rad51 recombination protein. In contrast, Mre11 protein, part of the MRX complex, accumulates at unresected DSB ends. CDK1 is not required when the DNA damage checkpoint is initiated by lesions that are processed by nucleotide excision repair. Maintenance of the DSB-induced checkpoint requires continuing CDK1 activity that ensures continuing end resection. CDK1 is also important for a later step in homologous recombination, after strand invasion and before the initiation of new DNA synthesis.  相似文献   

7.
Genotoxic stress triggers the activation of checkpoints that delay cell-cycle progression to allow for DNA repair. Studies in fission yeast implicate members of the Rad family of checkpoint proteins, which includes Rad17, Rad1, Rad9 and Hus1, as key early-response elements during the activation of both the DNA damage and replication checkpoints. Here we demonstrate a direct regulatory linkage between the human Rad17 homologue (hRad17) and the checkpoint kinases, ATM and ATR. Treatment of human cells with genotoxic agents induced ATM/ATR-dependent phosphorylation of hRad17 at Ser 635 and Ser 645. Overexpression of a hRad17 mutant (hRad17AA) bearing Ala substitutions at both phosphorylation sites abrogated the DNA-damage-induced G2 checkpoint, and sensitized human fibroblasts to genotoxic stress. In contrast to wild-type hRad17, the hRad17AA mutant showed no ionizing-radiation-inducible association with hRad1, a component of the hRad1-hRad9-hHus1 checkpoint complex. These findings demonstrate that ATR/ATM-dependent phosphorylation of hRad17 is a critical early event during checkpoint signalling in DNA-damaged cells.  相似文献   

8.
Courbet S  Gay S  Arnoult N  Wronka G  Anglana M  Brison O  Debatisse M 《Nature》2008,455(7212):557-560
Genome stability requires one, and only one, DNA duplication at each S phase. The mechanisms preventing origin firing on newly replicated DNA are well documented, but much less is known about the mechanisms controlling the spacing of initiation events(2,3), namely the completion of DNA replication. Here we show that origin use in Chinese hamster cells depends on both the movement of the replication forks and the organization of chromatin loops. We found that slowing the replication speed triggers the recruitment of latent origins within minutes, allowing the completion of S phase in a timely fashion. When slowly replicating cells are shifted to conditions of fast fork progression, although the decrease in the overall number of active origins occurs within 2 h, the cells still have to go through a complete cell cycle before the efficiency specific to each origin is restored. We observed a strict correlation between replication speed during a given S phase and the size of chromatin loops in the next G1 phase. Furthermore, we found that origins located at or near sites of anchorage of chromatin loops in G1 are activated preferentially in the following S phase. These data suggest a mechanism of origin programming in which replication speed determines the spacing of anchorage regions of chromatin loops, that, in turn, controls the choice of initiation sites.  相似文献   

9.
Recent studies have indicated the existence of tumorigenesis barriers that slow or inhibit the progression of preneoplastic lesions to neoplasia. One such barrier involves DNA replication stress, which leads to activation of the DNA damage checkpoint and thereby to apoptosis or cell cycle arrest, whereas a second barrier is mediated by oncogene-induced senescence. The relationship between these two barriers, if any, has not been elucidated. Here we show that oncogene-induced senescence is associated with signs of DNA replication stress, including prematurely terminated DNA replication forks and DNA double-strand breaks. Inhibiting the DNA double-strand break response kinase ataxia telangiectasia mutated (ATM) suppressed the induction of senescence and in a mouse model led to increased tumour size and invasiveness. Analysis of human precancerous lesions further indicated that DNA damage and senescence markers cosegregate closely. Thus, senescence in human preneoplastic lesions is a manifestation of oncogene-induced DNA replication stress and, together with apoptosis, provides a barrier to malignant progression.  相似文献   

10.
The Cdc25A phosphatase is essential for cell-cycle progression because of its function in dephosphorylating cyclin-dependent kinases. In response to DNA damage or stalled replication, the ATM and ATR protein kinases activate the checkpoint kinases Chk1 and Chk2, which leads to hyperphosphorylation of Cdc25A. These events stimulate the ubiquitin-mediated proteolysis of Cdc25A and contribute to delaying cell-cycle progression, thereby preventing genomic instability. Here we report that beta-TrCP is the F-box protein that targets phosphorylated Cdc25A for degradation by the Skp1/Cul1/F-box protein complex. Downregulation of beta-TrCP1 and beta-TrCP2 expression by short interfering RNAs causes an accumulation of Cdc25A in cells progressing through S phase and prevents the degradation of Cdc25A induced by ionizing radiation, indicating that beta-TrCP may function in the intra-S-phase checkpoint. Consistent with this hypothesis, suppression of beta-TrCP expression results in radioresistant DNA synthesis in response to DNA damage--a phenotype indicative of a defect in the intra-S-phase checkpoint that is associated with an inability to regulate Cdc25A properly. Our results show that beta-TrCP has a crucial role in mediating the response to DNA damage through Cdc25A degradation.  相似文献   

11.
Early tumorigenesis is associated with the engagement of the DNA-damage checkpoint response (DDR). Cell proliferation and transformation induced by oncogene activation are restrained by cellular senescence. It is unclear whether DDR activation and oncogene-induced senescence (OIS) are causally linked. Here we show that senescence, triggered by the expression of an activated oncogene (H-RasV12) in normal human cells, is a consequence of the activation of a robust DDR. Experimental inactivation of DDR abrogates OIS and promotes cell transformation. DDR and OIS are established after a hyper-replicative phase occurring immediately after oncogene expression. Senescent cells arrest with partly replicated DNA and with DNA replication origins having fired multiple times. In vivo DNA labelling and molecular DNA combing reveal that oncogene activation leads to augmented numbers of active replicons and to alterations in DNA replication fork progression. We also show that oncogene expression does not trigger a DDR in the absence of DNA replication. Last, we show that oncogene activation is associated with DDR activation in a mouse model in vivo. We propose that OIS results from the enforcement of a DDR triggered by oncogene-induced DNA hyper-replication.  相似文献   

12.
Heller RC  Marians KJ 《Nature》2006,439(7076):557-562
Unrepaired lesions in the DNA template pose a threat to accurate replication. Several pathways exist in Escherichia coli to reactivate a blocked replication fork. The process of recombination-dependent restart of broken forks is well understood, but the consequence of replication through strand-specific lesions is less well known. Here we show that replication can be restarted and leading-strand synthesis re-initiated downstream of an unrepaired block to leading-strand progression, even when the 3'-OH of the nascent leading strand is unavailable. We demonstrate that the loading by a replication restart system of a single hexamer of the replication fork helicase, DnaB, on the lagging-strand template is sufficient to coordinate priming by the DnaG primase of both the leading and lagging strands. These observations provide a mechanism for damage bypass during fork reactivation, demonstrate how daughter-strand gaps are generated opposite leading-strand lesions during the replication of ultraviolet-light-irradiated DNA, and help to explain the remarkable speed at which even a heavily damaged DNA template is replicated.  相似文献   

13.
SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase   总被引:1,自引:0,他引:1  
Pfander B  Moldovan GL  Sacher M  Hoege C  Jentsch S 《Nature》2005,436(7049):428-433
Damaged DNA, if not repaired before replication, can lead to replication fork stalling and genomic instability; however, cells can switch to different damage bypass modes that permit replication across lesions. Two main bypasses are controlled by ubiquitin modification of proliferating cell nuclear antigen (PCNA), a homotrimeric DNA-encircling protein that functions as a polymerase processivity factor and regulator of replication-linked functions. Upon DNA damage, PCNA is modified at the conserved lysine residue 164 by either mono-ubiquitin or a lysine-63-linked multi-ubiquitin chain, which induce error-prone or error-free replication bypasses of the lesions. In S phase, even in the absence of exogenous DNA damage, yeast PCNA can be alternatively modified by the small ubiquitin-related modifier protein SUMO; however the consequences of this remain controversial. Here we show by genetic analysis that SUMO-modified PCNA functionally cooperates with Srs2, a helicase that blocks recombinational repair by disrupting Rad51 nucleoprotein filaments. Moreover, Srs2 displays a preference for interacting directly with the SUMO-modified form of PCNA, owing to a specific binding site in its carboxy-terminal tail. Our finding suggests a model in which SUMO-modified PCNA recruits Srs2 in S phase in order to prevent unwanted recombination events of replicating chromosomes.  相似文献   

14.
The mechanisms by which eukaryotic cells sense DNA double-strand breaks (DSBs) in order to initiate checkpoint responses are poorly understood. 53BP1 is a conserved checkpoint protein with properties of a DNA DSB sensor. Here, we solved the structure of the domain of 53BP1 that recruits it to sites of DSBs. This domain consists of two tandem tudor folds with a deep pocket at their interface formed by residues conserved in the budding yeast Rad9 and fission yeast Rhp9/Crb2 orthologues. In vitro, the 53BP1 tandem tudor domain bound histone H3 methylated on Lys 79 using residues that form the walls of the pocket; these residues were also required for recruitment of 53BP1 to DSBs. Suppression of DOT1L, the enzyme that methylates Lys 79 of histone H3, also inhibited recruitment of 53BP1 to DSBs. Because methylation of histone H3 Lys 79 was unaltered in response to DNA damage, we propose that 53BP1 senses DSBs indirectly through changes in higher-order chromatin structure that expose the 53BP1 binding site.  相似文献   

15.
Aono N  Sutani T  Tomonaga T  Mochida S  Yanagida M 《Nature》2002,417(6885):197-202
Chromosome condensation requires condensin, which comprises five subunits. Two of these subunits--both being structural maintenance of chromosome (SMC) proteins-are coiled-coils with globular terminal domains that interact with ATP and DNA. The remaining three, non-SMC subunits also have essential, albeit undefined, roles in condensation. Here we report that Cnd2 (ref. 6), a non-SMC subunit of fission yeast similar to Drosophila Barren and the budding yeast protein Brn1 (refs 8, 9), is required for both interphase and mitotic condensation. In cnd2-1 mutants, ultraviolet-induced DNA damage is not repaired, and cells arrested by hydroxyurea do not recover. A definitive defect of interphase is abolishment of Cds1 (a checkpoint kinase) activation in the presence of hydroxyurea in both cnd2-1 mutant cells and in cells where other condensin subunits have been genetically disrupted. In the absence of hydroxyurea, a G2 checkpoint delay occurred in cnd2-1 mutants in a manner dependent on Cds1 and ATM-like Rad3, but not Chk1 (refs 10-13), before the mitotic condensation defect. Furthermore, cnd2-1 was synthetic-lethal with mutations of excision repair, RecQ helicase and DNA replication enzymes. These interphase and mitotic defects provide insight into the mechanistic role of non-SMC subunits that interact with the globular SMC domains in the heteropentameric holocomplex.  相似文献   

16.
During the evolution of cancer, the incipient tumour experiences 'oncogenic stress', which evokes a counter-response to eliminate such hazardous cells. However, the nature of this stress remains elusive, as does the inducible anti-cancer barrier that elicits growth arrest or cell death. Here we show that in clinical specimens from different stages of human tumours of the urinary bladder, breast, lung and colon, the early precursor lesions (but not normal tissues) commonly express markers of an activated DNA damage response. These include phosphorylated kinases ATM and Chk2, and phosphorylated histone H2AX and p53. Similar checkpoint responses were induced in cultured cells upon expression of different oncogenes that deregulate DNA replication. Together with genetic analyses, including a genome-wide assessment of allelic imbalances, our data indicate that early in tumorigenesis (before genomic instability and malignant conversion), human cells activate an ATR/ATM-regulated DNA damage response network that delays or prevents cancer. Mutations compromising this checkpoint, including defects in the ATM-Chk2-p53 pathway, might allow cell proliferation, survival, increased genomic instability and tumour progression.  相似文献   

17.
Gasser S  Orsulic S  Brown EJ  Raulet DH 《Nature》2005,436(7054):1186-1190
Some stimulatory receptors of the innate immune system, such as the NKG2D receptor (also called KLRK1) expressed by natural killer cells and activated CD8(+)T cells, recognize self-molecules that are upregulated in diseased cells by poorly understood mechanisms. Here we show that mouse and human NKG2D ligands are upregulated in non-tumour cell lines by genotoxic stress and stalled DNA replication, conditions known to activate a major DNA damage checkpoint pathway initiated by ATM (ataxia telangiectasia, mutated) or ATR (ATM- and Rad3-related) protein kinases. Ligand upregulation was prevented by pharmacological or genetic inhibition of ATR, ATM or Chk1 (a downstream transducer kinase in the pathway). Furthermore, constitutive ligand expression by a tumour cell line was inhibited by targeting short interfering RNA to ATM, suggesting that ligand expression in established tumour cells, which often harbour genomic irregularities, may be due to chronic activation of the DNA damage response pathway. Thus, the DNA damage response, previously shown to arrest the cell cycle and enhance DNA repair functions, or to trigger apoptosis, may also participate in alerting the immune system to the presence of potentially dangerous cells.  相似文献   

18.
DNA ligase I deficiency in Bloom's syndrome   总被引:8,自引:0,他引:8  
A E Willis  T Lindahl 《Nature》1987,325(6102):355-357
Certain rare human diseases with autosomal recessive mode of inheritance are associated with a greatly increased cancer frequency which may reflect specific defects in DNA repair or replication. These disorders include xeroderma pigmentosum, ataxia-telangiectasia, Fanconi's anaemia and Bloom's syndrome. Cells from individuals with Bloom's syndrome usually grow slowly in culture and exhibit increased chromosomal breakage and rearrangement, an elevated frequency of sister chromatid exchanges, retarded rates of progression of DNA replication forks, delayed conversion of replication intermediates to high-molecular-weight DNA, and slightly increased sensitivity to DNA-damaging agents. Several of these features are also characteristic of Escherichia coli and yeast mutants with a defective DNA ligase. In this investigation we show that one of the two DNA ligases of human cells, ligase I, is defective in a representative lymphoid cell line of Bloom's syndrome origin.  相似文献   

19.
The importance of repairing stalled replication forks   总被引:82,自引:0,他引:82  
The bacterial SOS response to unusual levels of DNA damage has been recognized and studied for several decades. Pathways for re-establishing inactivated replication forks under normal growth conditions have received far less attention. In bacteria growing aerobically in the absence of SOS-inducing conditions, many replication forks encounter DNA damage, leading to inactivation. The pathways for fork reactivation involve the homologous recombination systems, are nonmutagenic, and integrate almost every aspect of DNA metabolism. On a frequency-of-use basis, these pathways represent the main function of bacterial DNA recombination systems, as well as the main function of a number of other enzymatic systems that are associated with replication and site-specific recombination.  相似文献   

20.
Nagao K  Adachi Y  Yanagida M 《Nature》2004,430(7003):1044-1048
Sister chromatids are held together by cohesins. At anaphase, separase is activated by degradation of its inhibitory partner, securin. Separase then cleaves cohesins, thus allowing sister chromatid separation. Fission yeast securin (Cut2) has destruction boxes and a separase (Cut1) interaction site in the amino and carboxyl terminus, respectively. Here we show that securin is essential for separase stability and also for proper repair of DNA damaged by ultraviolet, X-ray and gamma-ray irradiation. The cut2(EA2) mutant is defective in the repair of ultraviolet damage lesions, although the DNA damage checkpoint is activated normally. In double mutant analysis of ultraviolet sensitivity, checkpoint kinase chk1 (ref. 9) and excision repair rad13 (ref. 10) mutants were additive with cut2(EA2), whereas recombination repair rhp51 (ref. 11) and cohesin subunit rad21 (ref. 12) mutants were not. Cohesin was hyper-modified on ultraviolet irradiation in a Rad3 kinase-dependent way. Experiments using either mutant cohesin that cannot be cleaved by separase or a protease-dead separase provide evidence that this DNA repair function of securin-separase acts through the cleavage of cohesin. We propose that the securin-separase complex might aid DNA repair by removing local cohesin in interphase cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号