共查询到20条相似文献,搜索用时 86 毫秒
1.
通过GP-内射性和small内射性研究环的半本原性和正则性,证明了在J(R)是约化的条件下,如下条件等价:(1)R是正则环;(2)R是半正则环且对J(R)的每个元a,存在正整数n,使得Ran是GP-内射模;(3)R是半正则环且每个单奇异的左R-模都是small内射模;(4)R是半正则环且对J(R)的每个元a,存在正整数n,使得Ran是EP-内射模。 相似文献
2.
3.
吕瑞芳 《浙江师范大学学报(自然科学版)》2002,25(3):237-238
环R称为准正则环,如果环R的每个右理想是由R的若干个幂等元所生成,主要结果是:(1)设R是准正则环,如果R的分式环Q作为右R模是右Noether的,则R是半单Artin环。(2)设R是准正则环,如果环R的每个素右理想都是极大右理想,则R是强正则环。 相似文献
4.
5.
6.
张远平 《安徽师范大学学报(自然科学版)》1995,18(1):15-19
Kaplansky证明了可换环R是正则的当且仅当每个单R-模是内射的,这个结果推广到比较一般的环中可以证明,duo环R是正则的当且仅当每个单R-模是内射的,本文将此结果进一步推广到模中。 相似文献
7.
主要证明了下列条件等价:(1)R是强正则环;(2)R是ELT-的半素环,且对于R的每一个本质左理想L,(R/L)R是平坦模,R的每一个极大左理想或极大右理想是GW-理想;(3)R是ZC-环,R的每一个极大本质左理想是GW-理想且R的每一个单奇异左模是GP-同射模或平坦模. 相似文献
8.
Zhang Jule 《安徽师范大学学报(自然科学版)》1990,(3)
本文证明了如下主要结果: (1)环R是正则的当且仅当R的每个本质左理想均是左P—内射的; (2)约化环R是强正则的当且仅当R的每个极大本质左理想均是左P—内射的; (3)设R是左P—内射环,且R的每个闭左理想均由幂等元生成,那么R是正则的当且仅当对于R的任意本质左理想L,R/L是左P—内射模。 (4)环R是强正则的当且仅当Z(R)=0且R的任意主左理想是左理想的左零化子。 相似文献
9.
王建平 《安徽师范大学学报(自然科学版)》1990,13(4):19-23
本文将已有的一些可换环的结论推广到一类非可换环上去,同时还改进了某些结论,得到了如下主要结果: 设A是零因子可换环,那么以下条件等价: (1)A是正则环; (2)A是V-环且A的每个极大本质左理想是双边; (3)每个单奇异A-模是P-内射的,且A的每个极大本质左理想是双边的; (4)A的每个极大本质左理想是P-内射的; (5)A的每个本质左零化子是P-内射的; (6)存在忠实左A-模C使当d∈C且l(d)是本质的时,l(d)是P-内射的; (7)A中每个主左理想是平坦左零化子, (8)A包含极大左理想五使当k∈K且,l(K)是本质的时,l(k)是P-内射的。 相似文献
10.
丁力 《安庆师范学院学报(自然科学版)》2009,15(1):1-3
通过拟理想对环的正则性进行刻画,证明了:(1)环R是强正则环当且仅当R是Abelian的左GP—y’-环,且R的每个极大本质左理想是拟理想;(2)若环R的每个极大本质左理想是拟理想,则R是正则环当且仅当R是左AGP-内射的左GP—V’-环。 相似文献
11.
辛林 《福建师范大学学报(自然科学版)》1988,(3)
本文讨论弱本原环的稠密性问题,主要结果是: 环R是弱本原的当且仅当存在(D,V,M)使得 (1)如果x,y≠0∈V,则存在r,s∈R使xr=ys≠0。 (2)如果x_1,x_2∈M是D上线性无关元,则存在非零元r,s∈R使x_1r=x_2s,x_2r=x_1s且S|Dx_i是自同构,i=1,2。 相似文献
12.
文章首先介绍纯理想的定义,把纯理想的定义推广到弱纯理想,探讨它的某些内容;随后给出GPF环的概念,得到约化GPF环的一个等价条件;重点讨论约化GPF环的一些性质;最后给出GPF环与GPF模之间的关系. 相似文献
13.
设R是一个特征不等于2的素环,δ为R的一个广义导子,d为其伴随导子.讨论R满足下列任何一个条件时的交换性,①δ([x,y])=[x,y];②δ(x(0)y)=x(0)y;③[δ(x),x]=0,其中x,y为R的某一个子集中的元素. 相似文献
14.
15.
16.
朱占敏 《湖北民族学院学报(自然科学版)》2003,21(4):88-89
证明了对于一个环R,下列条件等价:(1)R是左凝聚的;(2)对任意正整数n,Mn(R)是左1-凝聚的;(3)Ext^2R(R/I,N)=0对于任意有限生成左理想I及F-内射模RN成立;(4)若N1≤N都是F-内射左R-模,则N/N1也是F-内射模. 相似文献
17.
卢业广 《安徽大学学报(自然科学版)》1994,18(4):16-21
设R是有单位元的环.我们称R为循环环,如果加群(R,+)是循环群;称R为U-循环群,如果R的全体单位作成的乘群U(R)是循环群;称R为双循环环,如果(R,+)和U(R)都是循环群.本文利用(R,+)与U(R)的一些性质讨论环R的性质和结构,所得主要结果如下:(1)若R是Artin半单环,则U(R)是有限的当且仅当R是有限的.(2)域F是U-循环环当且仅当F是有限的.(3)若R是域F上所有n阶上三角形矩阵作成的环,则R是U-循环环当且仅当n=2和F≌Z2.(4)若R是无限环,则R是双循环环当且仅当R≌Z.(5)设R是有限环且|R|=n>1,则R是双循环环当且仅当R≌Zn,n为2,4,pk,2pk,其中p为任意奇素数,k为任意正整数. 相似文献
18.
用直投射模刻划完全环和半完全环 总被引:1,自引:0,他引:1
薛卫民 《福建师范大学学报(自然科学版)》1994,10(1):1-5
本文引入直投射覆盖的概念,证明了环R为左完全环当且仅当每一个左R-模(平坦左R-模)具有直投射覆盖;当且仅当(有限生成)拟投射左R-模的直极限为直投射模。本文还证明了环R为半完全环当且仅当每一个有限生成(由2个元素生成的)左R-模具有直投射覆盖;当且仅当对所有自然数n(存在自然数n>1)使得每一个循环左R_n-模具有直投射覆盖,这里R_n为环R上的n阶全阵环。 相似文献
19.
20.
FCG-内射模、FCGP-内射模与某些环 总被引:3,自引:1,他引:3
朱占敏 《西南师范大学学报(自然科学版)》2002,27(2):127-132
定义了左FCG-内射模和左FCGP-内射模,研究了它们的一些性质,用左FCG-内射模刻画了左V-环。称一个环R为左FCG-遗传环,如果投射左R-模的有限余生成了模是投射的。给出了环R为左FCG-遗传环的一些等价条件和左FCG-遗传环为半单环的条件。当R为左余Noether环时,R为左FCG-遗传环当且仅当R的每个有限余生成左理想是投射的。左FCG-遗传环是Morita不变的。 相似文献