首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Early tumorigenesis is associated with the engagement of the DNA-damage checkpoint response (DDR). Cell proliferation and transformation induced by oncogene activation are restrained by cellular senescence. It is unclear whether DDR activation and oncogene-induced senescence (OIS) are causally linked. Here we show that senescence, triggered by the expression of an activated oncogene (H-RasV12) in normal human cells, is a consequence of the activation of a robust DDR. Experimental inactivation of DDR abrogates OIS and promotes cell transformation. DDR and OIS are established after a hyper-replicative phase occurring immediately after oncogene expression. Senescent cells arrest with partly replicated DNA and with DNA replication origins having fired multiple times. In vivo DNA labelling and molecular DNA combing reveal that oncogene activation leads to augmented numbers of active replicons and to alterations in DNA replication fork progression. We also show that oncogene expression does not trigger a DDR in the absence of DNA replication. Last, we show that oncogene activation is associated with DDR activation in a mouse model in vivo. We propose that OIS results from the enforcement of a DDR triggered by oncogene-induced DNA hyper-replication.  相似文献   

2.
DNA damage checkpoint genes, such as p53, are frequently mutated in human cancer, but the selective pressure for their inactivation remains elusive. We analysed a panel of human lung hyperplasias, all of which retained wild-type p53 genes and had no signs of gross chromosomal instability, and found signs of a DNA damage response, including histone H2AX and Chk2 phosphorylation, p53 accumulation, focal staining of p53 binding protein 1 (53BP1) and apoptosis. Progression to carcinoma was associated with p53 or 53BP1 inactivation and decreased apoptosis. A DNA damage response was also observed in dysplastic nevi and in human skin xenografts, in which hyperplasia was induced by overexpression of growth factors. Both lung and experimentally-induced skin hyperplasias showed allelic imbalance at loci that are prone to DNA double-strand break formation when DNA replication is compromised (common fragile sites). We propose that, from its earliest stages, cancer development is associated with DNA replication stress, which leads to DNA double-strand breaks, genomic instability and selective pressure for p53 mutations.  相似文献   

3.
A DNA damage checkpoint response in telomere-initiated senescence   总被引:1,自引:0,他引:1  
Most human somatic cells can undergo only a limited number of population doublings in vitro. This exhaustion of proliferative potential, called senescence, can be triggered when telomeres--the ends of linear chromosomes-cannot fulfil their normal protective functions. Here we show that senescent human fibroblasts display molecular markers characteristic of cells bearing DNA double-strand breaks. These markers include nuclear foci of phosphorylated histone H2AX and their co-localization with DNA repair and DNA damage checkpoint factors such as 53BP1, MDC1 and NBS1. We also show that senescent cells contain activated forms of the DNA damage checkpoint kinases CHK1 and CHK2. Furthermore, by chromatin immunoprecipitation and whole-genome scanning approaches, we show that the chromosome ends of senescent cells directly contribute to the DNA damage response, and that uncapped telomeres directly associate with many, but not all, DNA damage response proteins. Finally, we show that inactivation of DNA damage checkpoint kinases in senescent cells can restore cell-cycle progression into S phase. Thus, we propose that telomere-initiated senescence reflects a DNA damage checkpoint response that is activated with a direct contribution from dysfunctional telomeres.  相似文献   

4.
During the evolution of cancer, the incipient tumour experiences 'oncogenic stress', which evokes a counter-response to eliminate such hazardous cells. However, the nature of this stress remains elusive, as does the inducible anti-cancer barrier that elicits growth arrest or cell death. Here we show that in clinical specimens from different stages of human tumours of the urinary bladder, breast, lung and colon, the early precursor lesions (but not normal tissues) commonly express markers of an activated DNA damage response. These include phosphorylated kinases ATM and Chk2, and phosphorylated histone H2AX and p53. Similar checkpoint responses were induced in cultured cells upon expression of different oncogenes that deregulate DNA replication. Together with genetic analyses, including a genome-wide assessment of allelic imbalances, our data indicate that early in tumorigenesis (before genomic instability and malignant conversion), human cells activate an ATR/ATM-regulated DNA damage response network that delays or prevents cancer. Mutations compromising this checkpoint, including defects in the ATM-Chk2-p53 pathway, might allow cell proliferation, survival, increased genomic instability and tumour progression.  相似文献   

5.
Common fragile sites have long been identified by cytogeneticists as chromosomal regions prone to breakage upon replication stress. They are increasingly recognized to be preferential targets for oncogene-induced DNA damage in pre-neoplastic lesions and hotspots for chromosomal rearrangements in various cancers. Common fragile site instability was attributed to the fact that they contain sequences prone to form secondary structures that may impair replication fork movement, possibly leading to fork collapse resulting in DNA breaks. Here we show, in contrast to this view, that the fragility of FRA3B--the most active common fragile site in human lymphocytes--does not rely on fork slowing or stalling but on a paucity of initiation events. Indeed, in lymphoblastoid cells, but not in fibroblasts, initiation events are excluded from a FRA3B core extending approximately 700 kilobases, which forces forks coming from flanking regions to cover long distances in order to complete replication. We also show that origins of the flanking regions fire in mid-S phase, leaving the site incompletely replicated upon fork slowing. Notably, FRA3B instability is specific to cells showing this particular initiation pattern. The fact that both origin setting and replication timing are highly plastic in mammalian cells explains the tissue specificity of common fragile site instability we observed. Thus, we propose that common fragile sites correspond to the latest initiation-poor regions to complete replication in a given cell type. For historical reasons, common fragile sites have been essentially mapped in lymphocytes. Therefore, common fragile site contribution to chromosomal rearrangements in tumours should be reassessed after mapping fragile sites in the cell type from which each tumour originates.  相似文献   

6.
7.
Senescence and genomic integrity are thought to be important barriers in the development of malignant lesions. Human fibroblasts undergo a limited number of cell divisions before entering an irreversible arrest, called senescence. Here we show that human mammary epithelial cells (HMECs) do not conform to this paradigm of senescence. In contrast to fibroblasts, HMECs exhibit an initial growth phase that is followed by a transient growth plateau (termed selection or M0; refs 3-5), from which proliferative cells emerge to undergo further population doublings (approximately 20-70), before entering a second growth plateau (previously termed senescence or M1; refs 4-6). We find that the first growth plateau exhibits characteristics of senescence but is not an insurmountable barrier to further growth. HMECs emerge from senescence, exhibit eroding telomeric sequences and ultimately enter telomere-based crisis to generate the types of chromosomal abnormalities seen in the earliest lesions of breast cancer. Growth past senescent barriers may be a pivotal event in the earliest steps of carcinogenesis, providing many genetic changes that predicate oncogenic evolution. The differences between epithelial cells and fibroblasts provide new insights into the mechanistic basis of neoplastic transformation.  相似文献   

8.
9.
Non-coding RNAs (ncRNAs) are involved in an increasingly recognized number of cellular events. Some ncRNAs are processed by DICER and DROSHA RNases to give rise to small double-stranded RNAs involved in RNA interference (RNAi). The DNA-damage response (DDR) is a signalling pathway that originates from a DNA lesion and arrests cell proliferation3. So far, DICER and DROSHA RNA products have not been reported to control DDR activation. Here we show, in human, mouse and zebrafish, that DICER and DROSHA, but not downstream elements of the RNAi pathway, are necessary to activate the DDR upon exogenous DNA damage and oncogene-induced genotoxic stress, as studied by DDR foci formation and by checkpoint assays. DDR foci are sensitive to RNase A treatment, and DICER- and DROSHA-dependent RNA products are required to restore DDR foci in RNase-A-treated cells. Through RNA deep sequencing and the study of DDR activation at a single inducible DNA double-strand break, we demonstrate that DDR foci formation requires site-specific DICER- and DROSHA-dependent small RNAs, named DDRNAs, which act in a MRE11–RAD50–NBS1-complex-dependent manner (MRE11 also known as MRE11A; NBS1 also known as NBN). DDRNAs, either chemically synthesized or in vitro generated by DICER cleavage, are sufficient to restore the DDR in RNase-A-treated cells, also in the absence of other cellular RNAs. Our results describe an unanticipated direct role of a novel class of ncRNAs in the control of DDR activation at sites of DNA damage.  相似文献   

10.
Upon the aberrant activation of oncogenes, normal cells can enter the cellular senescence program, a state of stable cell-cycle arrest, which represents an important barrier against tumour development in vivo. Senescent cells communicate with their environment by secreting various cytokines and growth factors, and it was reported that this 'secretory phenotype' can have pro- as well as anti-tumorigenic effects. Here we show that oncogene-induced senescence occurs in otherwise normal murine hepatocytes in vivo. Pre-malignant senescent hepatocytes secrete chemo- and cytokines and are subject to immune-mediated clearance (designated as 'senescence surveillance'), which depends on an intact CD4(+) T-cell-mediated adaptive immune response. Impaired immune surveillance of pre-malignant senescent hepatocytes results in the development of murine hepatocellular carcinomas (HCCs), thus showing that senescence surveillance is important for tumour suppression in vivo. In accordance with these observations, ras-specific Th1 lymphocytes could be detected in mice, in which oncogene-induced senescence had been triggered by hepatic expression of Nras(G12V). We also found that CD4(+) T cells require monocytes/macrophages to execute the clearance of senescent hepatocytes. Our study indicates that senescence surveillance represents an important extrinsic component of the senescence anti-tumour barrier, and illustrates how the cellular senescence program is involved in tumour immune surveillance by mounting specific immune responses against antigens expressed in pre-malignant senescent cells.  相似文献   

11.
Falck J  Coates J  Jackson SP 《Nature》2005,434(7033):605-611
Ataxia-telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are members of the phosphoinositide-3-kinase-related protein kinase (PIKK) family, and are rapidly activated in response to DNA damage. ATM and DNA-PKcs respond mainly to DNA double-strand breaks, whereas ATR is activated by single-stranded DNA and stalled DNA replication forks. In all cases, activation involves their recruitment to the sites of damage. Here we identify related, conserved carboxy-terminal motifs in human Nbs1, ATRIP and Ku80 proteins that are required for their interaction with ATM, ATR and DNA-PKcs, respectively. These motifs are essential not only for efficient recruitment of ATM, ATR and DNA-PKcs to sites of damage, but are also critical for ATM-, ATR- and DNA-PKcs-mediated signalling events that trigger cell cycle checkpoints and DNA repair. Our findings reveal that recruitment of these PIKKs to DNA lesions occurs by common mechanisms through an evolutionarily conserved motif, and provide direct evidence that PIKK recruitment is required for PIKK-dependent DNA-damage signalling.  相似文献   

12.
Spinocerebellar ataxia with axonal neuropathy-1 (SCAN1) is a neurodegenerative disease that results from mutation of tyrosyl phosphodiesterase 1 (TDP1). In lower eukaryotes, Tdp1 removes topoisomerase 1 (top1) peptide from DNA termini during the repair of double-strand breaks created by collision of replication forks with top1 cleavage complexes in proliferating cells. Although TDP1 most probably fulfils a similar function in human cells, this role is unlikely to account for the clinical phenotype of SCAN1, which is associated with progressive degeneration of post-mitotic neurons. In addition, this role is redundant in lower eukaryotes, and Tdp1 mutations alone confer little phenotype. Moreover, defects in processing or preventing double-strand breaks during DNA replication are most probably associated with increased genetic instability and cancer, phenotypes not observed in SCAN1 (ref. 8). Here we show that in human cells TDP1 is required for repair of chromosomal single-strand breaks arising independently of DNA replication from abortive top1 activity or oxidative stress. We report that TDP1 is sequestered into multi-protein single-strand break repair (SSBR) complexes by direct interaction with DNA ligase IIIalpha and that these complexes are catalytically inactive in SCAN1 cells. These data identify a defect in SSBR in a neurodegenerative disease, and implicate this process in the maintenance of genetic integrity in post-mitotic neurons.  相似文献   

13.
Heller RC  Marians KJ 《Nature》2006,439(7076):557-562
Unrepaired lesions in the DNA template pose a threat to accurate replication. Several pathways exist in Escherichia coli to reactivate a blocked replication fork. The process of recombination-dependent restart of broken forks is well understood, but the consequence of replication through strand-specific lesions is less well known. Here we show that replication can be restarted and leading-strand synthesis re-initiated downstream of an unrepaired block to leading-strand progression, even when the 3'-OH of the nascent leading strand is unavailable. We demonstrate that the loading by a replication restart system of a single hexamer of the replication fork helicase, DnaB, on the lagging-strand template is sufficient to coordinate priming by the DnaG primase of both the leading and lagging strands. These observations provide a mechanism for damage bypass during fork reactivation, demonstrate how daughter-strand gaps are generated opposite leading-strand lesions during the replication of ultraviolet-light-irradiated DNA, and help to explain the remarkable speed at which even a heavily damaged DNA template is replicated.  相似文献   

14.
Johnson RE  Washington MT  Haracska L  Prakash S  Prakash L 《Nature》2000,406(6799):1015-1019
DNA lesions can often block DNA replication, so cells possess specialized low-fidelity, and often error-prone, DNA polymerases that can bypass such lesions and promote replication of damaged DNA. The Saccharomyces cerevisiae RAD30 and human hRAD30A encode Pol eta, which bypasses a cis-syn thymine-thymine dimer efficiently and accurately. Here we show that a related human gene, hRAD30B, encodes the DNA polymerase Pol iota, which misincorporates deoxynucleotides at a high rate. To bypass damage, Pol iota specifically incorporates deoxynucleotides opposite highly distorting or non-instructional DNA lesions. This action is combined with that of DNA polymerase Pol zeta, which is essential for damage-induced mutagenesis, to complete the lesion bypass. Pol zeta is very inefficient in inserting deoxynucleotides opposite DNA lesions, but readily extends from such deoxynucleotides once they have been inserted. Thus, in a new model for mutagenic bypass of DNA lesions in eukaryotes, the two DNA polymerases act sequentially: Pol iota incorporates deoxynucleotides opposite DNA lesions, and Pol zeta functions as a mispair extender.  相似文献   

15.
Tercero JA  Diffley JF 《Nature》2001,412(6846):553-557
The checkpoint kinase proteins Mec1 and Rad53 are required in the budding yeast, Saccharomyces cerevisiae, to maintain cell viability in the presence of drugs causing damage to DNA or arrest of DNA replication forks. It is thought that they act by inhibiting cell cycle progression, allowing time for DNA repair to take place. Mec1 and Rad53 also slow S phase progression in response to DNA alkylation, although the mechanism for this and its relative importance in protecting cells from DNA damage have not been determined. Here we show that the DNA-alkylating agent methyl methanesulphonate (MMS) profoundly reduces the rate of DNA replication fork progression; however, this moderation does not require Rad53 or Mec1. The accelerated S phase in checkpoint mutants, therefore, is primarily a consequence of inappropriate initiation events. Wild-type cells ultimately complete DNA replication in the presence of MMS. In contrast, replication forks in checkpoint mutants collapse irreversibly at high rates. Moreover, the cytotoxicity of MMS in checkpoint mutants occurs specifically when cells are allowed to enter S phase with DNA damage. Thus, preventing damage-induced DNA replication fork catastrophe seems to be a primary mechanism by which checkpoints preserve viability in the face of DNA alkylation.  相似文献   

16.
The RCAF complex mediates chromatin assembly during DNA replication and repair   总被引:42,自引:0,他引:42  
Chromatin assembly is a fundamental biological process that is essential for the replication and maintenance of the eukaryotic genome. In dividing cells, newly synthesized DNA is rapidly assembled into chromatin by the deposition of a tetramer of the histone proteins H3 and H4, followed by the deposition of two dimers of histones H2A and H2B to complete the nucleosome-the fundamental repeating unit of chromatin. Here we describe the identification, purification, cloning, and characterization of replication-coupling assembly factor (RCAF), a novel protein complex that facilitates the assembly of nucleosomes onto newly replicated DNA in vitro. RCAF comprises the Drosophila homologue of anti-silencing function 1 protein ASF1 and histones H3 and H4. The specific acetylation pattern of H3 and H4 in RCAF is identical to that of newly synthesized histones. Genetic analyses in Saccharomyces cerevisiae demonstrate that ASF1 is essential for normal cell cycle progression, and suggest that RCAF mediates chromatin assembly after DNA replication and the repair of double-strand DNA damage in vivo.  相似文献   

17.
A role for Saccharomyces cerevisiae histone H2A in DNA repair   总被引:11,自引:0,他引:11  
Downs JA  Lowndes NF  Jackson SP 《Nature》2000,408(6815):1001-1004
  相似文献   

18.
Gasser S  Orsulic S  Brown EJ  Raulet DH 《Nature》2005,436(7054):1186-1190
Some stimulatory receptors of the innate immune system, such as the NKG2D receptor (also called KLRK1) expressed by natural killer cells and activated CD8(+)T cells, recognize self-molecules that are upregulated in diseased cells by poorly understood mechanisms. Here we show that mouse and human NKG2D ligands are upregulated in non-tumour cell lines by genotoxic stress and stalled DNA replication, conditions known to activate a major DNA damage checkpoint pathway initiated by ATM (ataxia telangiectasia, mutated) or ATR (ATM- and Rad3-related) protein kinases. Ligand upregulation was prevented by pharmacological or genetic inhibition of ATR, ATM or Chk1 (a downstream transducer kinase in the pathway). Furthermore, constitutive ligand expression by a tumour cell line was inhibited by targeting short interfering RNA to ATM, suggesting that ligand expression in established tumour cells, which often harbour genomic irregularities, may be due to chronic activation of the DNA damage response pathway. Thus, the DNA damage response, previously shown to arrest the cell cycle and enhance DNA repair functions, or to trigger apoptosis, may also participate in alerting the immune system to the presence of potentially dangerous cells.  相似文献   

19.
Masumoto H  Hawke D  Kobayashi R  Verreault A 《Nature》2005,436(7048):294-298
DNA breaks are extremely harmful lesions that need to be repaired efficiently throughout the genome. However, the packaging of DNA into nucleosomes is a significant barrier to DNA repair, and the mechanisms of repair in the context of chromatin are poorly understood. Here we show that lysine 56 (K56) acetylation is an abundant modification of newly synthesized histone H3 molecules that are incorporated into chromosomes during S phase. Defects in the acetylation of K56 in histone H3 result in sensitivity to genotoxic agents that cause DNA strand breaks during replication. In the absence of DNA damage, the acetylation of histone H3 K56 largely disappears in G2. In contrast, cells with DNA breaks maintain high levels of acetylation, and the persistence of the modification is dependent on DNA damage checkpoint proteins. We suggest that the acetylation of histone H3 K56 creates a favourable chromatin environment for DNA repair and that a key component of the DNA damage response is to preserve this acetylation.  相似文献   

20.
Telomeres shorten during ageing of human fibroblasts   总被引:132,自引:0,他引:132  
C B Harley  A B Futcher  C W Greider 《Nature》1990,345(6274):458-460
The terminus of a DNA helix has been called its Achilles' heel. Thus to prevent possible incomplete replication and instability of the termini of linear DNA, eukaryotic chromosomes end in characteristic repetitive DNA sequences within specialized structures called telomeres. In immortal cells, loss of telomeric DNA due to degradation or incomplete replication is apparently balanced by telomere elongation, which may involve de novo synthesis of additional repeats by novel DNA polymerase called telomerase. Such a polymerase has been recently detected in HeLa cells. It has been proposed that the finite doubling capacity of normal mammalian cells is due to a loss of telomeric DNA and eventual deletion of essential sequences. In yeast, the est1 mutation causes gradual loss of telomeric DNA and eventual cell death mimicking senescence in higher eukaryotic cells. Here, we show that the amount and length of telomeric DNA in human fibroblasts does in fact decrease as a function of serial passage during ageing in vitro and possibly in vivo. It is not known whether this loss of DNA has a causal role in senescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号