首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为获得输电走廊上边坡失稳滚石对杆塔撞击影响,以湖州地区为例,实地调研输电走廊边坡情况,采用自然坡面试验分析边坡角度、滚石的重量和速度等参数对冲击峰值的影响,分析滚石破坏对输电杆塔的影响.结果表明:滚石的冲击力峰值与滚石冲击速度、滚石质量成线性正相关关系,且坡面坡角直接影响滚石的冲击力峰值;滚石对铁塔基础和塔材造成的故障破坏与滚石冲击次数有明显的正相关关系,且滚石质量超过1 kg,将出现故障破坏.提出采用水泥固化灾害体、采用柔性防护网等应对措施减少滚石灾害故障的产生,相关结果为输电走廊地质灾害防护提供技术参考.  相似文献   

2.
以Hertz弹性碰撞理论而所取得的滚石冲击力远远超过实际情况,无法应用于工程实践中。针对此,本文以Hertz接触力学和Thornton弹塑性假设为基础,考虑了构造物材料特性、冲击物的相对尺寸、结构变位等因素,建立了滚石对构造物的冲击力修正方程,最终以二郎山1#滑坡防治工程中滚石对锚索抗滑桩的冲击为例进行对比分析。结果表明:二郎山1#滑坡治理工程中,滚石冲击力计算结果显示,修正系数介于0.06-0.11之间,计算结果与实际估计较为一致;修正系数随冲击速度的增加而先急剧后平稳降低;落石冲击力随构造物强度、滚石速度的增大而增大。  相似文献   

3.
以Hertz弹性碰撞理论所取得的滚石冲击力远远超过实际情况,无法应用于工程实践中。因此,以Hertz接触力学和Thornton弹塑性假设为基础,考虑构造物材料特性、冲击物的相对尺寸、结构变位等因素,建立了滚石对构造物的冲击力修正方程,最终以二郎山1#滑坡防治工程中滚石对锚索抗滑桩的冲击为例进行对比分析。结果表明:二郎山1#滑坡治理工程中,滚石冲击力计算结果显示,修正系数介于0.06~0.11之间,计算结果与实际估计较为一致;修正系数随冲击速度的增加而先急剧后平稳降低;落石冲击力随构造物强度、滚石速度的增大而增大。  相似文献   

4.
基于冲击动力学方法,结合修正的考虑混凝土塑性特性及永久变形的分阶段弹塑性接触理论,构建了滚石冲击荷载下钢筋混凝土棚洞板动力响应的一般解析解法,通过有限元模拟验证了方法的适用性,探讨了不同冲击位置的响应规律.依据冲击试验中钢筋混凝土板裂缝开展的分阶段特征,定义最大冲击力与冲切承载力的比值为损伤参数,作为冲切损伤程度的简化理论判据,采用3种典型冲切计算方法对其影响因素进行了参数敏感性分析.结果表明:滚石冲击钢筋混凝土棚洞板的最大冲击力与最大压痕和永久压痕呈正相关,三者均与挠度呈负相关;从靠近棚洞板边缘处到中心位置,其最大冲击力近似呈线性减小;滚石半径相对于冲击速度,以及板厚相对于混凝土强度对冲切损伤程度的影响都更大,而是否考虑纵筋销栓作用也显著影响其冲切损伤状态的评估.  相似文献   

5.
通过构建滚石棚洞冲击系统非线性集中质量模型,结合Meyer非线性接触定律,运用能量原理研究了滚石冲击下棚洞结构(普通棚洞和耗能棚洞)的动力响应,在此基础上研究棚洞板在滚石冲击荷载下的抗冲切计算。通过实例计算表明,耗能减震棚洞能很好地吸收滚石冲击能量,大幅度降低滚石冲击力,有效提高混凝土板抗冲切能力,是一种理想的滚石防护措施。  相似文献   

6.
采用大型摆锤冲击试验和LS-DYNA数值模型,研究了空心砖不同孔隙率(28%、42%、54%)和孔隙分布(2孔、8孔、18孔、32孔、50孔)对空心砖缓冲性能的影响。结果表明:滚石冲击力随着空心砖孔隙率的增大而减小, 54%孔隙率空心砖比28%孔隙率空心砖减小了23%滚石冲击力峰值和46%空心砖缓冲层传递力峰值;滚石冲击力和空心砖缓冲层传递力随着孔隙分布均匀化而减小,相比于2孔空心砖,50孔空心砖最大可减小46%滚石冲击力,传递力可减小31%;均匀的孔隙结构分布可以有效增大传递力扩散角,50孔空心砖比2孔空心砖传递力扩散角增大46%。  相似文献   

7.
从滚石运动轨迹确定出发,基于数值模拟方法对云南省澜沧江沿岸某在建桥梁桥址区滚石高发边坡进行滚石滚落数值模拟,确定滚石运动特征。基于获得的滚石运动特征,使用Ls-dyna对滚石撞击柔性防护结构响应进行分析,获得拦石网动态响应特征。分析结果表明:滚石运动特征与边坡形式及覆盖层特征相关,在模拟假设条件下,与滚石质量相关性并不明显;重点关注的3个撞击参数拦石网最大变形、冲击力峰值和接触时间均表现出与撞击速度和滚石半径较好的线性相关性;柔性防护网在对不同半径滚石撞击下表现出明显的"子弹效应",小半径滚石穿透拦石网所需动能明显小于大半径滚石。  相似文献   

8.
通过在棚洞支座处设置金属耗能器代替传统砂石垫层,吸收滚石冲击能量,可最大程度减小滚石冲击力。常用的金属耗能器存在初始屈服荷载远高于平均压垮荷载的缺陷。为此,提出一种新型带初始损伤的金属耗能器,通过降低其初始屈服荷载,达到优化棚洞工程的目的。基于LS-DYNA研究轴向冲击荷载下不同初始损伤模式金属耗能器的动力响应,比较了其破坏模式、冲击力-位移关系与耗能效果。结果表明:合理的初始损伤设置可有效降低金属耗能器初始屈服荷载达40%;而平均压垮荷载、吸收的总能量基本保持不变,研究成果可为金属耗能器在棚洞工程中的应用提供依据。  相似文献   

9.
针对冲击力计算模型无法准确地将接触力与局部变形联系起来的问题,进行了块体冲击的理论计算和实验研究,以提高落石的冲击力和冲击能的计算精度,进而对防护网进行优化设计。将弹性网视作弹性膜,引入狄拉克函数划分“单向均匀拉伸区”和“双向均匀拉伸区”,通过伽辽金法推导出了落石冲击力和冲击能的计算公式,最后对施加不同预拉力的弹性网进行冲击实验。将弹性网的变形量代入上述公式计算冲击力和冲击能,分析误差产生的原因。并提出修正系数对结果进行修正,修正后的冲击力、冲击能最大误差为2.8%、3.9%。与现有的落石冲击力和冲击能测算方法相比,所提测算方法更为简化,可用于模型试验中测算落石的冲击力和冲击能,为落石防护的优化设计提供基本依据。  相似文献   

10.
落石灾害往往给交通基础设施、过往车辆、行人等造成极大威胁。落石冲击力是落石灾害防护结构设计的主要荷载,因此,对落石冲击力进行深入研究能为防护结构的设计提供理论参考。对比分析了PFC3D模型与现有落石冲击力公式计算结果差异,并采用离散元程序,对落石不同半径、不同角度地冲击作用进行了数值模拟。结果表明:PFC3D离散元程序能够用于落石冲击力的计算;在冲击能量相同的情况下,落石斜碰作用冲击力不及正碰作用,当冲击角度α50°时,斜碰作用冲击力与正碰作用冲击力相差变小;并且落石冲击力切向分量随着角度先增加后减小,角度越缓,落石冲击力主要由切向力控制。当斜碰垂直分速度与正碰速度相同的情况下,斜碰冲击角度越缓,落石冲击力反而越大,切向力占比越大。研究结果可为落石斜碰作用下防护结构的设计提供参考。  相似文献   

11.
落石灾害往往给交通基础设施、过往车辆、行人等造成极大地威胁。落石冲击力是落石灾害防护结构设计的主要荷载,因此,对落石冲击力进行深入研究能为防护结构的设计提供理论参考。本文对比分析了PFC3D模型与现有落石冲击力公式计算结果差异,并采用离散元程序,对落石不同半径、不同角度地冲击作用进行了数值模拟。结果表明:PFC3D离散元程序能够用于落石冲击力的计算;在冲击能量相同的情况下,落石斜碰作用冲击力不及正碰作用,当冲击角度α>50°时,斜碰作用冲击力与正碰作用冲击力相差变小;并且落石冲击力切向分量随着角度先增加后减小,角度越缓,落石冲击力主要由切向力控制。当斜碰垂直分速度与正碰速度相同的情况下,斜碰冲击角度越缓,落石冲击力反而越大,切向力占比越大。本文的研究结果可为落石斜碰作用下防护结构的设计提供参考。  相似文献   

12.
沈均  李新坡  徐骏  唐雄  姚军 《科学技术与工程》2021,21(21):9043-9049
提出了一种利用桩-土材料的弹塑性性质,将崩塌滚石的冲击动能转化为土体和桩体的弹塑性变形,从而降低崩塌滚石运动速度,拦截滚石的消能桩结构.基于能量守恒定律和弹性地基梁法,推导了消能桩系统在滚石冲击作用下的变形计算公式.对于消能桩的设计,根据勘察资料获取滚石的粒径、下落高度并考虑坡面条件等因素可以估算其运动动能,采用推导公式可计算出消能桩在给定控制变形量条件下的耗能量,从而可以确定消能桩的设计.通过两个崩塌滚石实例对计算模型的运用进行说明,实例计算结果也表明了计算模型具有较好的实用性.  相似文献   

13.
在泥石流易发区,针对格栅坝支墩、桥墩这样的简支梁结构,确定大块石的冲击荷载尤为重要。基于Hertz弹性球接触理论,结合Thornton理想弹塑性体假设,考虑混凝土材料受大块石冲击荷载作用下的弹塑性特性,将泥石流大块石冲击简支梁结构的整个动力响应过程概化为:第一次碰撞—桩身弯曲变形—第二次碰撞—静止。以能量守恒为基础,将泥石流大块石冲击力分解为第一次碰撞产生的冲击力和第二次碰撞产生的冲击力,以初次碰撞的冲击力为最大冲击力,提出了冲击力修正计算公式。最后进行实例分析,计算结果表明:梁长越短,冲击压力增长越快,梁长越长,冲击压力增长越慢,且该公式计算值仅占基于Hertz弹性球接触理论结果值的20. 3%,更符合实际情况。  相似文献   

14.
报导了钢管撕裂卷曲变形的冲击实验研究和理论分析。利用DHR-9401型落锤式冲击加载装置,对直径为54mm、壁厚为0.43~2.50mm的6组A3无缝钢管进行了轴向撞击实验研究。通过实验得到了钢管撕裂卷曲的变形模态和轴向冲击载荷作用下的冲击力—时程曲线。并对撕裂卷曲过程中单位时间内各种耗散能进行了理论分析,得到了单位时间内各部分能量占总能量的比值;给出了稳定变形阶段的冲击力表达式。理论计算结果与实验吻合较好。  相似文献   

15.
汪峰  唐现梓  黄伟 《科学技术与工程》2022,22(28):12440-12448
输电线路穿越复杂山区和不良地质区域时极易受到侧方滚石撞击。为了掌握滚石撞击作用下山区输电塔受力特性,以某山区800 kV特高压输电线路T型输电塔为对象,采用非线性显式动力学方法,建立了输电塔滚石撞击有限元模型,研究了输电塔撞击区域杆件变形、应力及其时程变化,分析了滚石撞击位置、角度、速度以及滚石直径对输电塔撞击响应的影响规律,给出了输电塔滚石撞击力峰值计算公式,并与其他算法对比验证。结果表明:输电塔滚石撞击力呈现三角脉冲形态,持续时间短、冲击力大;输电塔撞击区域塔杆变形和内力较大,撞击时塔杆应力水平瞬时达到峰值,随后迅速振荡衰减,并逐渐稳定;滚石撞击后塔杆发生塑性变形,出现残余应力,但残余剪应力水平小于残余轴向应力;滚石撞击位置处于1/6~1/8塔高时,滚石撞击力峰值和杆件的残余轴向应力相对较大,撞击角度为0°时,输电塔的撞击响应最为剧烈,撞击速度和滚石直径对输电塔撞击响应影响较大;撞击力峰值拟合公式可用于输电塔滚石撞击力的估算。  相似文献   

16.
针对公路岩质边坡的滚石灾害问题,建立岩石跳跃滚落的理论分析模型,推导了岩石运动的轨迹方程、滚石第1次落点后的水平速度和竖向速度以及第2次落点的水平距离,计算了滚石掉入构筑物表面的水平距离和对砂垫层的撞击能,并计算了滚石撞入砂垫层的入土深度,分析了撞击能与入土深度的关系,同时推导出了滚石落入砂垫层的冲击压力、最大法向压应力、撞击能以及压入量,并通过2个算例对提出的模型进行验证,根据计算结果选取了合理的防护方式对滚石灾害进行防护。研究结果表明:算例1滚石对砂垫层的压入量为1.28m,设计构筑物上的砂垫层厚度为2m,同时考虑到构筑物的安全储备,滚石撞击坡面后的水平运动距离小于撞击点到公路路缘的水平距离,滚石飞落至地面的撞击能为167kJ,采用型号为AXI-015(防护等级为200kJ)的被动防护网可有效防护构筑物,避免安全事故的发生;算例2滚石落入砂垫层的压入量为0.87m,撞击能为124kJ,设计洞口顶回填1.5m厚的砂垫层,采用防护等级为150kJ的被动防护网可有效防护边坡滚石灾害。采用提出的模型计算并进行防护的效果非常明显,证明了所建模型的可实施性,为以后类似工程提供了有益指导。  相似文献   

17.
为对枪械自动机易损件进行冲击疲劳寿命模拟实验,研制了一种新型卧式冲击疲劳试验机。该试验机采用凸轮-弹簧式加载装置加载,通过调节电机转速、弹簧刚度和预压量调节冲击频率和冲击力峰值。对样机性能进行了实验研究,经测试获得冲击力特性,加载运动特性,冲击力峰值、冲量与弹簧预压量之间的定量关系及冲击频率对冲击力峰值的影响情况,为该类冲击疲劳试验机应用提供了依据。实验结果表明该试验机工作原理可行、动作可靠,能够满足自动机易损件冲击疲劳寿命模拟实验要求。  相似文献   

18.
冲击荷载会对钢筋混凝土梁产生严重损伤,冲击破坏往往是冲击初期造成的。冲击初期(冲击力到达支座前)冲击力完全由惯性力抵抗,不同时刻的内力分布与惯性力的分布情况密切相关。对冲击荷载下的RC梁(Reinforced Concrete Beam)进行有限元模拟(ANSYS/LS-DYNA),分析了冲击初期RC梁的惯性力与内力分布情况。结果表明:冲击初期,冲击力以应力波的形式逐渐向支点传递,冲击力由静止点内梁的惯性力平衡;梁体的冲击力传导可分为三个阶段,即应力波沿梁高方向传导、沿梁长度方向传导与冲击力到达支座后;不同阶段的惯性力分布情况不同,且惯性力的分布影响梁体的剪力和弯矩以及梁的破坏形态。  相似文献   

19.
以闽东南典型球状风化花岗岩边坡滚石灾害为对象,采用工程地质分析与数值模拟相结合,研究边坡滚石的运动轨迹、停滞概率和冲击特性等成灾规律;模拟分析坡形坡率优化、平台缓冲介质和滚石拦挡措施的减灾机理和工程效果;最终提出一套系统的边坡滚石灾害防护设计方案.  相似文献   

20.
冲击荷载会对钢筋混凝土梁产生严重损伤,冲击破坏往往是冲击初期造成的。冲击初期(冲击力到达支座前)冲击力完全由惯性力抵抗,不同时刻的内力分布与惯性力的分布情况密切相关。对冲击荷载下的钢筋混凝土梁(reinforced concrete,RC)进行有限元模拟(ANSYS/LS-DYNA),分析了冲击初期RC梁的惯性力与内力分布情况。结果表明:冲击初期,冲击力以应力波的形式逐渐向支点传递,冲击力由静止点内梁的惯性力平衡;梁体的冲击力传导可分为三个阶段,即应力波沿梁高方向传导、沿梁长度方向传导与冲击力到达支座后;不同阶段的惯性力分布情况不同,且惯性力的分布影响梁体的剪力和弯矩以及梁的破坏形态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号