首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
四轮独立驱动电动汽车通过轮毂电机直接驱动车辆,电磁力输出波动直接作用于车轮和悬架,将导致车辆的动力学性能恶化。利用傅立叶级数法,建立考虑不平衡径向力的悬架系统机电耦合模型。在此基础上,提出了电磁主动悬架多目标粒子群优化设计方法,以抑制轮毂电机驱动电动汽车的振动负效应问题。研究结果表明:通过对主动悬架构型以及控制器参数的多目标优化设计,能有效削弱振动负效应,改善电动汽车的安全性和舒适性。  相似文献   

2.
电动车用轮毂电机受路面激励和车重的双重作用,定转子相对偏心进而产生不平衡磁拉力,其垂向分量与车辆悬架系统的垂向振动相耦合,影响电动汽车的平顺性、舒适性等性能。针对这一机电耦合问题,以一台永磁式轮毂电机为研究对象,利用磁场叠加法获得负载气隙磁密分布,引入复数相对磁导和偏心磁导修正系数,建立考虑定子开槽效应的电机偏心磁场和不平衡磁拉力解析模型,并通过有限元仿真和样机试验验证了解析模型的有效性。根据悬架系统的垂向振动与电机偏心不平衡磁拉力的实时耦合关系,利用拉格朗日法求解车辆动力学方程,建立1/4车身垂向耦合振动模型。以轮毂电机定子垂向振动加速度、车身垂向振动加速度、悬架动挠度和轮胎动载荷为主要指标,研究机电耦合效应对车辆垂向动力学特性的影响,揭示不平衡磁拉力输出特性与车辆动力学响应之间的机电耦合机理。研究结果表明,机电耦合效应使电动汽车的平顺性、操稳性和安全性等性能总体下降。  相似文献   

3.
为了探索新型悬架的实现形式与隔振潜能,根据机电相似性理论设计了一种新型车辆机电悬架系统,以四分之一车辆悬架模型作为研究对象,搭建了悬架系统的动力学模型,给出了具体的结构实现方案,并采用鱼群算法对机电悬架系统中的元件参数进行优化求解。仿真结果表明,相较于传统被动悬架,新型机电悬架系统的隔振性能得到有效改善,其中,车身加速度均方根值减小5. 27%,悬架动行程均方根值减小22. 72%,轮胎动载荷均方根值也略有减小。最后,研究了电机电感与电阻对悬架动力学性能指标的影响规律,分析表明,当考虑电机电感与电阻因素时,悬架的动态性能指标均有所增加,其中,对车身加速度均方值影响较小,而对悬架动行程均方根值和轮胎动载荷均方根值的影响较大。台架试验结果进一步验证了理论分析的正确性。  相似文献   

4.
基于非线性电磁啮合刚度,推导出机电集成超环面传动的机电耦合非线性动力学方程.运用该方程研究了该传动系统的非线性振动.结果表明:在某种参数组合条件下,系统产生拟周期振动.蜗杆线圈电流、中心距对行星轮半径比以及线圈电感对于传动系统的非线性振动具有重要影响,这些参数应该适当选取以保证传动系统良好的动力学性能.  相似文献   

5.
针对风电传动系统集成化结构,提出了一种可用于风力发电机变速-变载工况下的机电-刚柔耦合动力学模型,不仅考虑了齿轮的时变啮合刚度、相位关系、轴和壳体的结构柔性等机械因素,同时计入了发电机系统中永磁体磁饱和特性、电磁径向力波以及空间谐波等电磁因素。探究齿轮箱-发电机集成系统机电耦合动态特性,讨论了壳体柔性对系统动态特性的影响,提出了一种升速分析法,找寻了系统的共振转速。结合模态能量法和阵型矢量分布原理,找寻了共振时的潜在危险构件。研究表明:齿轮系统与发电机存在强耦合特性,壳体的柔性对系统机电耦合特性影响显著。针对集成化系统而言,齿轮内激励为共振转速下的主要激励源;但采用薄壁壳体时,发电机电磁激励不容忽视,易激发新的共振转速。选择合理的壁厚可有效提高系统的安全可靠性,减少共振区域,减轻系统构件的损坏。  相似文献   

6.
电磁推力轴承的力学特性研究   总被引:6,自引:0,他引:6  
文中讨论了计入推力盘静态倾斜影响后的电磁推力轴承的力学特性,导出了其静、动特性的系数公式,并结合某涡轮膨胀机的电磁推力轴承进行了实例计算.结果表明,推力盘的静态倾斜对电磁推力轴承的力学特性将产生显著影响,使得电磁推力轴承对系统中的电磁径向轴承产生强烈的耦合作用.该结果可用于五自由度电磁轴承转子系统的机电耦合的动力学分析.  相似文献   

7.
提出了轮式铰接车辆悬架主动控制中转弯时的动力学耦合模型,从耦合模型和仿真模型证明了轮式铰接车辆悬架三维方向存在耦合问题.同时从提高铰接车辆行驶速度评价,说明存在利用耦合效应进行悬架主动控制策略设计、构建通过悬架的单向作动控制策略、探讨最大限度减低三维方向车辆振动的可能性,即通过悬架单方向实时主动控制,达到抑制其他方向振动的目的.为轮式铰接车辆悬架实施主动控制的方法与策略提供了理论依据和方向.  相似文献   

8.
为了改善内、外部激励下机电传动系统的动态响应特性,提出一种新型自减振行星传动形式:TVD-PG(torsional vibration damper and planetary gear)传动系统,采用扭转减振装置取代传统行星齿轮中某一构件与箱体固连的方式.考虑传动轴扭转变形和行星齿轮时变啮合刚度,建立电机和适用于变速工况下的TVD-PG传动系统的耦合动力学模型.仿真分析了TVD-PG传动系统在启动和稳定工况时的动态响应特性,并与传统的行星齿轮传动方式进行对比.结果表明:在启动阶段,TVD-PG传动系统可快速减小电机电磁转矩波动,使电机和输出端转速快速平稳上升,同时改善了启动和稳定工况下行星齿轮系统的动态啮合力状况.由于机电耦合作用,在系统稳定时可清晰观察到齿轮系统内部激励参数对电机部分的影响.  相似文献   

9.
为了探索车辆可控ISD(inerter-spring-damper)悬架的实现形式与隔振潜能,提出一种液电耦合式车辆可控ISD悬架系统。首先,介绍新型液电惯容器的基本结构和工作原理,以车辆1/4悬架模型作为研究对象,搭建液电耦合式车辆ISD悬架的动力学模型。然后,以提升悬架综合性能为控制优化目标,设计基于液电惯容器的车辆ISD悬架单神经元PID控制器,应用多目标遗传算法对控制参数进行优化求解,在随机路面输入条件下仿真分析液电耦合式车辆可控ISD悬架的隔振性能。最后,研制新型液电惯容器试验样机,并搭建液电耦合式车辆可控ISD悬架试验台架,基于dSPACE进行半实物仿真试验。研究结果表明:与传统被动悬架相比,液电耦合式ISD悬架的车身加权加速度均方根下降了7.8%,悬架动挠度均方根下降了13.8%,悬架综合性能得到显著改善,为车辆可控ISD悬架的研究提供新思路。  相似文献   

10.
在机电相似理论的基础上,基于“惯容器”具有与“电容器”相类似的通高频、阻低频的特性,建立了每一级中均含有“惯容器-弹簧-阻尼器”(inerter-spring-damper,ISD)的两级ISD悬架系统的单轮车辆模型.仿真分析了汽车悬架的惯质系数对两级ISD悬架系统传递特性的影响,在频域和时域内分别探讨了随机和脉冲输入下汽车悬架系统的动力学响应.研究结果表明:在满足车身加速度增益的要求下,适当提高惯质系数可以改善两级ISD悬架系统的减振性能.两级ISD悬架具有比经典ISD悬架更好的低频减振性能.与传统被动悬架相比,两级ISD悬架具有更好的综合减振性能.  相似文献   

11.
由于缺乏对高速电主轴系统特性的完整理解,特别是在实际应用中,因高速电主轴自身的机电耦合失效而在没有任何报警情况下所产生的突发性故障,严重限制了高速电主轴的应用.基于机电系统分析动力学理论,从机电能量转换的机理、耦合磁场所起的传递作用出发,利用变分原理和状态方程建立了机电耦合动力学数学模型;对机电能量的转换,输入电压、电流与输出转矩、转速的相互关系做了量化说明,并用MATLAB/SIMULINK软件进行了仿真.  相似文献   

12.
为了研究阻尼器惯性质量对汽车馈能悬架系统减振性能及馈能特性的影响,优化电磁阻尼器选型,根据汽车悬架系统动力学方程推出阻尼器惯性质量表达,并引入惯性质量,以悬架系统车身加速度、悬架动行程和车轮动变形量作为系统输出,建立了精确化馈能悬架系统的状态空间模型,通过状态空间模型系统输出的频域传递特性分析了惯性质量等级对悬架系统主要性能的影响。仿真结果表明:随着阻尼器等效惯性质量的增大,悬架系统平均馈能功率降低;虽然低频段主要性能指标的幅频传递特性有小幅改善,但中频段传递特性恶化严重;过高的阻尼器等效惯性质量会引起悬架系统总体性能恶化。通过1/4悬架系统台架实验对仿真结果进行验证,结果表明:在相同激励条件下,电磁阻尼器惯性质量使馈能悬架系统平均能量回收功率产生最高44%的衰减;较高等级的惯性质量导致悬架系统关键性能指标传递特性在中频段产生不同程度的恶化,共振频率发生小幅前移,悬架系统总体性能变差。实验结果验证了仿真结果的正确性。  相似文献   

13.
针对汽车悬架液压减振器建立了由路面不平度激励模型、非线性悬架振动模型、考虑温度影响的减振器阻尼力试验数据模型、减振器热动力学模型子模型组成的耦合动力学效应的理论分析模型.通过减振器阻尼力特性试验数据建立了考虑温度影响的非线性阻尼力试验模型,利用减振器发热特性试验数据辨识了减振器热动力学模型参数.利用所建立的耦合动力学理论模型预测了减振器温度上升动态过程,并进行了影响因素的仿真分析.研究表明,减振器的热机耦合效应在高速行驶和较差路面条件下表现突出,而在低速或者良好路面条件下不明显;行驶车速、路面等级、环境温度与减振器周围空气流动速度、悬架非簧载质量、减振器壳体换热面积对减振器发热平衡温度高低具有很大影响,而悬架等效刚度、簧载质量和减振器壳体比热容参数对之影响很小.  相似文献   

14.
本文论述了电动力学基本方程与固体力学方程在耦合情况下的联系和复杂性问题,阐述了导出麦克斯韦电磁应力张量和电磁动量形式耦合动力学方程的意义,最后对几个电磁固体耦合动力学的典型问题进行了分析.  相似文献   

15.
基于汽车系统动力学理论,利用拉格朗日定理,推导设备-车-路耦合的9自由度主动悬架动力学方程,采用滤波白噪音作为左右车轮随机路面不平度激励,根据最优控制原理设计LQR控制器,建立主动悬架控制仿真模型.采用自适应粒子群算法优化加权系数Q,将主动悬架的设备加速度等性能参数均方根值与被动悬架进行对比分析.仿真结果表明:采用自适应粒子群算法优化LQR控制方法,能够显著改善车辆平顺性,保护车载设备可靠性.   相似文献   

16.
针对传统汽车悬架不能将振动能量回收利用的缺点,提出了一种基于无级变速器速比控制实现悬架阻尼调节且可实现车身振动能量回收的电磁半主动悬架设计方案。在分析其结构和工作原理的基础上,基于动力学分析建立了无级变速器速比与悬架阻尼之间的对应关系以及该悬架系统的动力学方程;设计了无级变速器速比PID控制器,以1/4汽车悬架系统为例,对汽车平顺性以及振动能量回收效果进行了仿真分析;仿真结果表明,通过对无级变速器速比进行控制调节悬架系统阻尼,可以实现良好的汽车平顺性,并可实现车身振动能量的回收。  相似文献   

17.
针对电子设备机箱结构设计难以同时满足结构强度、通风散热和电磁屏效3方面要求的问题,从场耦合的角度入手,建立了电子设备结构、电磁与温度的机电热耦合模型,并在此基础上构建了耦合优化模型。通过某电子设备机箱的结构设计应用,优化吸波材料的位置和尺寸,在提高电磁屏效的同时满足通风散热的要求,说明了耦合模型与优化方法的有效性。  相似文献   

18.
智能桁架结构机电耦合有限元分析与实验研究   总被引:3,自引:0,他引:3  
从压电弹性体的本构关系和机电耦合变分原理出发,建立了智能桁架结构的机电耦合有限元动力方程。由此推导出智能桁架结构的动态响应与压电主动构件输入电压之间的机电耦合传递函数,并给出结构模态参数识别方法,提出了利用压电主动构件作为智能桁架结构内激励源的结构模态测试新理论。最后,用文中的分析方法建立了一个三维智能桁架结构的动力学模型,有限元计算与实验结果的一致性很好。  相似文献   

19.
针对传统汽车悬架不能将振动能量回收利用的缺点,提出了一种基于无级变速器速比控制实现悬架阻尼调节且可实现车身振动能量回收的电磁半主动悬架设计方案。在分析其结构和工作原理的基础上,基于动力学分析建立了无级变速器速比与悬架阻尼之间的对应关系以及该悬架系统的动力学方程;设计了无级变速器速比PID控制器,以1/4汽车悬架系统为例,对汽车平顺性以及振动能量回收效果进行了仿真分析;仿真结果表明,通过对无级变速器速比进行控制调节悬架系统阻尼,可以实现良好的汽车平顺性,并可实现车身振动能量的回收。  相似文献   

20.
采用功率流的方法,对车用电磁悬架的馈能特性进行了分析。给出了馈能式电磁悬架的能量转换量及转换率的量化方法。解决了馈能式电磁悬架系统的能量量化问题。对馈能式主动电磁悬架系统、馈能式被动电磁悬架系统和最大馈能系统的馈能特性进行了比较。结果表明所设计的馈能系统具有以下特性:馈能式电磁悬架系统各部分的能量转换量在时间域上呈现出非线性特性;馈能式被动悬架系统的馈能特性优于馈能式主动悬架系统;馈能式主动悬架系统反馈的能量大于其消耗的能量,馈能式主动悬架系统可以实现自供能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号