首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
贝利特-硫铝酸钡钙水泥水化机制   总被引:3,自引:0,他引:3  
贝利特-硫铝酸钡钙水泥是一种新型胶凝材料,与贝利特水泥相比,该水泥的水化速度快,凝结时间短,需水量少,耐腐蚀性好.阐述硫铝酸钡钙矿物、贝利特水泥和贝利特-硫铝酸钡钙水泥的水化机制.结果表明:适当增加石膏掺量可使贝利特-硫铝酸钡钙水泥的水化速度加快,增加钙矾石(AFt)在水化早期的形成数量,有利于水泥早期强度的提高;贝利特-硫铝酸钡钙水泥的水化产物与硅酸盐水泥相同,但其钙矾石的含量增多,氢氧化钙的含量降低.该水泥早期水化速率低于硅酸盐水泥水化速率,水化放热量减少.  相似文献   

2.
针对高贝利特硫铝酸盐水泥水化迅速、凝结时间短的问题,探讨了不同掺量的柠檬酸钠、硼酸和氨基三亚甲基膦酸在不同温度下,对高贝利特硫铝酸盐水泥凝结时间和水化热的影响。研究结果表明:在10℃和25℃时,柠檬酸钠和氨基三亚甲基膦酸延缓了高贝利特硫铝酸盐水泥水化,降低了水泥水化2 h的总放热量;在60℃的高温环境下,柠檬酸钠和大掺量硼酸的缓凝效果稍好,而氨基三亚甲基膦酸和小掺量硼酸的缓凝作用有限。柠檬酸钠和氨基三亚甲基膦酸可以延缓钙矾石的生成,细化钙矾石的尺寸,使高贝利特硫铝酸盐水泥浆体在凝结硬化时的总放热量增大。  相似文献   

3.
对比了矿渣对阿利特-硫铝酸盐水泥(AC$AC)和普通硅酸盐水泥(OPC)强度的影响,结合水化热、X线衍射(XRD)图谱和扫描电子显微镜(SEM)研究不同混合水泥的水化。结果表明:文中制备的阿利特-硫铝酸钙水泥对矿渣有较好的复合性。矿渣的掺入会降低水泥的1和3 d强度,对28 d强度影响不大。阿利特-硫铝酸钙水泥复合10%的矿渣能达到最好的性能(1、3和28 d强度分别为16.94、34.47和51.54 MPa)。其中1和3 d强度比同矿渣掺量的空白样和普通硅酸盐水泥样品高,甚至高于未掺矿渣的两种水泥的强度。矿渣的掺入会增加含硫铝酸盐矿物水泥样品的膨胀率。矿渣含量增加,加快三硫型水化硫铝酸钙(AFt)向单硫型水化硫铝酸钙(AFm)的转变。  相似文献   

4.
利用电化学阻抗谱法研究高贝利特硫铝酸盐水泥水化过程,得到不同水灰比下(0.6、0.8、1.0)的电化学阻抗谱曲线,并提出一种考虑弥散效应和水泥/电极界面扩散过程的等效电路模型,分析水泥水化过程中电化学阻抗参数和分形维数的变化规律.研究表明:不同水灰比下,高贝利特硫铝酸盐水泥的电化学阻抗谱具有相同的变化趋势.在整个水化过程中,随着龄期的增加和水灰比的减小,阻抗参数值和孔体积的分形维数增大,水泥的总孔隙率减小,结构变得密实;孔表面的分形维数则随着龄期的增加和水灰比的减小而减小.  相似文献   

5.
玄武岩纤维对不同胶凝材料混凝土的强韧化效应   总被引:2,自引:0,他引:2       下载免费PDF全文
为了研究玄武岩纤维对不同胶凝材料混凝土的强韧化效应,制备了玄武岩纤维增强普通硅酸盐水泥混凝土BFROPCC与玄武岩纤维增强地质聚合物混凝土BFRGC.采用φ100mm SHPB试验装置,分别研究了BFROPCC与BFRGC的冲击力学性能,并分析了玄武岩纤维对普通硅酸盐水泥混凝土OPCC与地质聚合物混凝土GC的强韧化效应...  相似文献   

6.
针对复杂地层钻探护壁堵漏技术难题,研制了一种硅酸盐-硫铝酸盐水泥基护壁堵漏材料。首先,分别对掺加外加剂的硅酸盐复合水泥、硫铝酸盐水泥的主要技术指标进行试验研究,在此基础上,按不同比例对两种不同系列的水泥进行复合,对复合浆液的流动度、可泵期、凝结时间以及强度等主要技术指标开展试验研究,并结合水化热与扫描电镜分析对其水化硬化过程进行探讨,揭示硅酸盐-硫铝酸盐复合水泥的水化协同效应。研究成果表明,利用硅酸盐-硫铝酸盐水泥水化协同效应可为解决松散破碎、陡倾宽缝以及动水冲蚀等复杂地层的护壁堵漏技术难题提供新的思路和解决方案。  相似文献   

7.
基于磷石膏完全替代石灰石的制备策略,以磷石膏、二氧化硅和氧化铝为水泥原料,烧制以硫铝酸钙和贝利特为主的硫铝酸盐水泥,考察了不同碳硫比(焦炭和硫酸钙的摩尔比)、煅烧温度和金属离子含量对水泥熟料矿物形成以及水泥性能的影响。结果表明:当碳硫比为2、煅烧制度为800~900℃-1 h/1 300℃-0.5 h时,在空气气氛下成功烧制出硫铝酸盐水泥熟料的主要矿物成分;在不外掺石膏的情况下,制备出的水泥净浆试件3 d抗压强度可达35.2 MPa, 28 d抗压强度达到42.8 MPa。利用磷石膏低温部分分解烧制的硫铝酸盐水泥达到了GB 20472—2006的要求。  相似文献   

8.
针对复杂地层钻探护壁堵漏技术难题,研制了一种硅酸盐-硫铝酸盐水泥基护壁堵漏材料。首先,分别对掺加外加剂的硅酸盐复合水泥、硫铝酸盐水泥的主要技术指标进行试验研究;在此基础上,按不同比例对两种不同系列的水泥进行复合,对复合浆液的流动度、可泵期、凝结时间以及强度等主要技术指标开展试验研究;并结合水化热与扫描电镜分析对其水化硬化过程进行探讨,揭示硅酸盐-硫铝酸盐复合水泥的水化协同效应。研究成果表明,利用硅酸盐-硫铝酸盐水泥水化协同效应可为解决松散破碎、陡倾宽缝以及动水冲蚀等复杂地层的护壁堵漏技术难题提供新的思路和解决方案。  相似文献   

9.
为了研究不同条件下玄武岩纤维沥青混合料的冻融劈裂性能,通过向沥青混合料中掺加玄武岩纤维制备试验试件,并测试分析不同条件处理试件的冻融劈裂性能。研究结果表明:玄武岩纤维可改善沥青混合料的冻融劈裂性能,同时还可增强紫外老化和冻融循环、热氧老化和冻融循环下沥青混合料的韧性。玄武岩纤维掺量为0.6%时,4次冻融和未老化下,沥青混合料的劈裂强度较未冻融未老化及未掺玄武岩纤维下分别减小0.52%、14.47%、21.45%、31.78%;4次冻融和紫外老化下,0.6%玄武岩纤维掺量沥青混合料的劈裂强度较未冻融老化及未掺玄武岩纤维下分别减小5.94%、19.64%、27.65%、39.28%;紫外老化和未冻融下,0.6%玄武岩纤维掺量沥青混合料的劈裂强度较未老化未冻融及未掺玄武岩纤维时增大3.88%。热氧老化未冻融下,0.6%玄武岩纤维掺量沥青混合料的劈裂强度较未老化未冻融及未掺玄武岩纤维时增大1.29%。紫外老化、热氧老化及未冻融下,0.6%玄武岩纤维掺量沥青混合料的劲度模量较未老化未冻融时分别增大1.01%和10.23%。  相似文献   

10.
选择熟料率值和硫铝酸钡钙掺量为影响因素,通过正交试验研究了贝利特一硫铝酸钡钙水泥的合成条件和力学性能,并利用XRD、SEM—EDS等测试手段分析了该水泥熟料的组成和结构。结果表明:煅烧温度为1320℃时,制备贝利特-硫铝酸钡钙水泥熟料最优化组合为铝率1.4,硅率2.3,石灰饱和系数0.77,硫铝酸钡钙矿物的质量分数为9%。在此条件下该水泥的3d和28d抗压强度分别达到11.4MPa和64.8MPa,展现了良好的力学性能。  相似文献   

11.
为了研究固化污泥在大变形固结过程中的渗透性特点,选用普通硅酸盐水泥(OPC)和硫铝酸盐水泥(SAC)作为固化材料,开展了14 d龄期重塑样和原状样的固结渗透试验,得到了固化污泥在不同应力条件下的压缩、渗透规律;通过不同固结压力下的离心试验,分析不同固结应力下固化污泥的孔隙组成.试验结果表明,20%添加量内,固化污泥压缩系数均在1 MPa-1以上,属于高压缩性土;固结应力在0~800 k Pa范围内时,固化污泥压缩系数随固结应力降低了两个数量级;固化污泥压缩、渗流过程存在明显非线性,在考虑渗透系数时,不适宜将渗透系数作为常数考虑;固化污泥固结过程中,大孔隙和中孔隙减少,而小孔隙反而增加,占总孔隙的50%以上.  相似文献   

12.
研究了铝酸盐水泥(质量分数0.25以内)与硅酸盐水泥混合体系的凝结时间、力学性能和干燥收缩率,并采用量热仪、X射线衍射仪、环境扫描电镜探讨了这些物理力学性能产生差异的原因.研究表明,随着铝酸盐水泥掺量的增加,混合体系的凝结时间不断缩短,力学强度先略升(6%左右时达到最高)后大幅降低,干燥收缩不断增加.少量铝酸盐水泥的掺入,对硅酸盐水泥的水化影响不大,仅造成水化早期浆体钙矾石的生成量微增;但掺量超过一定值时,将显著延缓硅酸盐水泥的水化,浆体中钙矾石不断转化为单硫型水化硫铝酸钙,非稳态水化铝酸钙也逐步发生晶型转变,从而导致微结构明显劣化.  相似文献   

13.
随着社会科学技术的进步,土木工程结构学科的发展,在很大程度上得益于性质优异的新材料、新技术的应用和发展,通过对加压水泥板的抗弯、抗折、抗冲击性等性能和研究纤维增强复合材料的抗拉、抗剪、抗疲劳等性能的研究,研发一种可用于建筑外墙、楼板的结构板.纤维(碳纤维,芳纶纤维或玄武岩纤维)增强多层水泥板由2~3层水泥加压板和1~2层网状纤维由粘结剂粘接组成结构板.通过试验研究不同纤维配置和粘结剂对其结构性能的影响,提出纤维增强多层水泥板的设计、制造方法和构造措施.  相似文献   

14.
为研究玄武岩纤维对桥梁混凝土的增韧阻裂效果,设计了弯曲韧性试验、断裂韧性试验,分析不同玄武岩纤维掺量(体积分数,0%、0.07%、0.08%、0.09%,下同)对桥梁混凝土抗裂性能的影响规律,从中选出最优纤维掺量。利用动态疲劳加载试验,研究普通混凝土和最优纤维掺量组在不同荷载应力水平下(0.5、0.7)弯曲韧性系数和断裂能的劣化衰减规律,并基于扫描电镜(SEM)试验,从微观角度剖析玄武岩纤维对桥梁混凝土的增韧阻裂机理。试验结果表明:玄武岩纤维能够增加混凝土的弯曲韧性,起到增韧阻裂作用,有利于避免在荷载作用下混凝土过早开裂,玄武岩纤维掺量为0.08%时,改善效果最明显,28 d弯曲韧性系数较普通混凝土提高了235%;玄武岩纤维显著提升了桥梁混凝土的断裂能,当纤维掺量为0.08%时,提升效果最明显,较普通混凝土提高了247%;在不同荷载应力水平下,桥梁混凝土的弯曲韧性系数和断裂能都随着疲劳加载次数的增加而逐渐衰退,且初期降低幅度小,后期降低幅度较大。但掺入玄武岩纤维可以减缓桥梁混凝土衰减速率,提高其抵抗疲劳开裂的能力,进而延长桥梁混凝土疲劳寿命;纤维与水泥基体之间良好的黏结性能,使得玄武岩...  相似文献   

15.
用化学纯试剂为原料,研究了CaF2对阿利特-硫铝酸钡钙水泥熟料矿物形成过程及水泥性能的影响。实验设计将具有早强性能的硫铝酸钡钙矿物引入到硅酸盐水泥熟料矿物体系中,并取代其中的C3A矿相。实验表明:适量的CaF2能改善熟料的易烧性,促进f-CaO的吸收和熟料矿物的形成。CaF2质量掺量为0.5%~1%时,有利于提高水泥的早期力学性能。CaF2质量掺量超过1.5%时,生成氟铝酸盐C11A7.CaF2,且不利于C3S和硫铝酸钡钙矿物形成。XRD和SEM-EDS分析表明,在该矿物体系中,含有阿利特、贝利特和少量硫铝酸钡钙矿物。这说明硫铝酸钡钙矿物能够和硅酸盐水泥熟料矿物复合并共存。  相似文献   

16.
浅析水泥矿物的水化原理   总被引:1,自引:0,他引:1  
硅酸盐水泥的矿物组成主要有硅酸三钙(C3S)、硅酸二钙(C2S)、铝酸三钙(C3A)和铁铝酸四钙(C4AF),四种矿物的水化速度和形成机理各不相同。本文通过对硅酸盐水泥的水化过程进行分析,使广大读者进一步了解水泥的水化过程,以期对水泥的生产及应用有所帮助。  相似文献   

17.
利用青海省当地原材料制备阿利特硫铝酸盐水泥熟料.该熟料结合了硅酸盐熟料和硫铝酸盐熟料的优点,具有碱性与硫酸根离子的双重激发作用,能很好地激发矿渣、粉煤灰等活性矿物材料.在此基础上,提出了高活性阿利特硫铝酸盐水泥方案.通过微观结构分析,探讨其水化反应的机理与过程,并阐明了复合胶凝体系的优势互补作用的原理.实验证明,高活性阿利特硫铝酸盐水泥,能充分发挥熟料自身独特的矿物组成特性和活性矿物材料的火山灰效应,使硬化浆体中Ca(OH)2含量降低,并因此而获得较为适宜的晶/胶比,使其后期强度明显提高.  相似文献   

18.
为研究玄武岩纤维对再生混凝土轴心受拉性能的影响,通过自行设计的混凝土轴拉试验装置,对不同玄武岩纤维体积掺量下(0、0.1%、0.2%、0.3%、0.4%和0.5%)的玄武岩纤维再生混凝土(basalt fiber recycled aggregate concrete,BFRAC)进行了轴心受拉试验,并分别与玄武岩纤维增强混凝土(basalt fiber reinforced concrete,BFRC)进行比较.研究结果表明,随着纤维掺量的增加,BFRAC的初裂强度、轴拉强度、初裂应变、峰值应变和初始弹性模量均呈现先增加后减小的趋势,纤维掺量为0.3%时,各项轴拉性能达到最大值,对应的提升率分别为40.5%、35.4%、10.4%、22.4%和16.9%.玄武岩纤维对再生混凝土轴拉性能的提升效果要优于普通混凝土.  相似文献   

19.
硫铝酸钡钙是一种性能优良的水泥新矿物,以该矿物为基础生产了性能优良的含钡硫铝酸盐水泥。本实验采用不同量的Ba^2 取代C4A3S中的Ca^2 ,合成了一系列新型硫铝酸钡钙物。利用XRD、IR、SEM等测试手段,研究了在外掺一定量石膏条件下的水化过程,确定了系统的水化产物主要为AFt、BaSO4和AH3凝胶,得出了含钡硫铝酸盐水泥早强快硬的原因。  相似文献   

20.
挤压成型纤维增强水泥砂浆板材的收缩性能   总被引:1,自引:0,他引:1  
为了研究挤压成型纤维增强水泥板材的收缩性能,采用不同的纤维、水泥基材、纤维掺量和水灰质量比,探讨了各参数对板材收缩的影响。研究发现:采用低缩复合水泥作为基材的板材收缩要比普通硅酸盐水泥作为基材的板材收缩要小,约为后者的一半,甚至更低;同时采用低缩复合水泥后,板材收缩速率加快,在成型5~10 d左右即进入体积稳定期,而普通硅酸盐水泥板材收缩发展相对较慢,50 d龄期时收缩仍有发展趋势。纤维品种对板材的收缩性能影响不大;加入纤维后的板材收缩增大,且有随着纤维体积掺量增大整体收缩增大的趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号