共查询到16条相似文献,搜索用时 31 毫秒
1.
提出了一种易于脉动阵列实现的平方根椭球状态定界算法。算法将椭球形状矩阵的平方根进行递推计算,使得计算的数值稳定性得以提高。由于平方根算法具有矩阵与矩阵以及矩阵与向量的运算形式,因而适合在并行处理器上执行。为了并行计算,给出了实现此平方根算法的脉动阵列结构。计算复杂性分析显示,若系统状态维数为n,串行计算的计算复杂度至少为O(n3),而并行计算的计算复杂度降为O(n)。仿真结果验证了本方法的有效性。 相似文献
2.
针对传统的滤波方法容易受系统动态模型不确定性和噪声协方差不准确的限制这一问题,提出一种将高斯过程回归融入平方根不敏卡尔曼滤波(unscented Kalam filter,UKF)算法中的滤波算法。该算法用高斯过程对训练数据进行学习,得到动态系统的回归模型及系统噪声的协方差;采用标准的平方根UKF算法,状态方程和观测方程,相应的噪声协方差由高斯过程实时自适应调整。将应用于飞行器SINS/GPS组合导航,结果表明,该方法能够自适应系统噪声,收敛速度快,导航精度高。 相似文献
3.
基于平方根UKF的车辆组合导航 总被引:1,自引:0,他引:1
针对扩展卡尔曼滤波(EKF)在车辆导航中存在着计算复杂、线性化误差大等缺点,将一种新的非线性滤波方法--平方根UKF方法(SRUKF)用于车辆GPS/DR组合导航中.和普遍采用的EKF方法相比,SRUKF方法不仅提高了车辆组合定位的精度和稳定性;而且不需要模型的具体解析形式,避免了复杂的Jacobi-an矩阵的计算,算法更简单,也更加易于实现.为了检验其有效性,将两种方法分剐对车辆GPS/DR组合导航系统进行滤波仿真,仿真结果进一步表明SRUKF方法明显优于EKF方法,是车辆组合导航中一种更理想的非线性滤波方法,真正实现了车辆低成本、高精度的实时定位. 相似文献
4.
基于修正的自适应平方根容积卡尔曼滤波算法 总被引:1,自引:0,他引:1
目标建模不确定性会造成滤波算法性能下降,通过构建强跟踪滤波器(strong tracking filter,STF)可以提升滤波算法的自适应性,但是构建STF时存在理论推导复杂、求解计算量大等局限和不足,针对上述问题,在平方根容积卡尔曼滤波(square-root cubature Kalman filter,SRCK... 相似文献
5.
基于平方根UKF的多传感器融合跟踪 总被引:2,自引:0,他引:2
为了提高融合算法的精度,将UKF(Unscented Kalman Filter)算法与多传感器顺序滤波融合跟踪算法相结合,提出了基于UKF的多传感器序贯融合算法.UKF算法利用非线性方程自身的传播,估计系统状态,避免了对非线性方程线性化的过程.顺序滤波融合算法用同一时刻的量测依次更新状态,计算复杂性低.仿真结果表明,UKF顺序滤波融合跟踪算法比传统的扩展卡尔曼滤波(EKF)算法有更高的跟踪性能,是一种有效的非线性融合算法. 相似文献
6.
针对系统动力学模型不准确可能导致滤波精度下降,以及系统状态协方差阵可能出现的负定性问题,提出一种新的高斯过程回归平方根分解无迹粒子滤波(Gaussian process regression square-root decomposition unscented particle filter,GPSR-UPF)算法。在该算法中,采用高斯过程回归求取UPF的重要性密度函数。当系统模型不准确时,通过高斯过程回归学习训练数据,进而获取系统的回归模型及系统噪声协方差,同时引入平方根变换抑制系统状态协方差阵的负定性。将提出的GPSR- UPF算法应用到捷联惯导/全球定位系统(strapdown inertial navigation system / global positioning system, SINS/GPS)组合导航系统中进行仿真验证。结果表明,所提出滤波算法的性能优于基本的无迹粒子滤波算法,能提高组合导航系统的解算精度。 相似文献
7.
讨论了SR-SARV模型的时间聚合性和同期聚合性,比较了波动模型之间的关系,指出了SR-SARV模型研究的意义,并给出其参数估计方法,对上证指数进行了实证研究。 相似文献
8.
自适应CS模型的强跟踪平方根容积卡尔曼滤波算法 总被引:2,自引:0,他引:2
对于目标跟踪过程中的强机动问题,基于当前统计(current statistical, CS)模型和改进的强跟踪平方根容积卡尔曼滤波器(square root cubature Kalman filter, SCKF),提出新的跟踪算法。在CS模型和改进输入估计算法的基础上,引入加加速度估计,使得状态过程噪声与状态协方差矩阵相联系,实现模型的自适应调整。从正交性原理出发,重新确定了渐消因子的引入位置,并提出了新的渐消因子计算形式,以克服传统渐消因子在雷达量测坐标系中的失效问题,从而构造强跟踪平方根容积卡尔曼滤波器。另外,构造强机动检测函数,利用SCKF的输出来调整自适应CS模型中的机动频率。仿真结果表明,相比基于CS模型的多重渐消因子强跟踪SCKF算法、改进CS模型的强跟踪SCKF(SCKF STF)算法和交互式多模型(interacting multiple model, IMM)SCKF算法,所提算法具有更佳的目标机动适应性和跟踪精度;相比于IMM SCKF算法,实时性有明显改善。 相似文献
9.
平方根二阶EKF及其在目标运动分析中的应用 总被引:2,自引:0,他引:2
针对无源目标运动分析的强非线性和低可观测性特点,提出一种改进的二阶扩展Kalman跟踪滤波算法。为了降低传统二阶扩展Kalman算法的计算量,首先研究了对状态矢量正交化处理,减少二阶展开项协方差矩阵计算量的方法;在此基础上,将平方根Kalman算法与二阶扩展Kalman滤波器相结合,提高了滤波器的数值稳定性能;最后,将该算法应用在一个目标运动分析实例中,通过计算机仿真和试验验证了该算法的有效性。 相似文献
10.
基于Sage-Husa算法的自适应平方根CKF目标跟踪方法 总被引:1,自引:0,他引:1
在目标跟踪中,噪声的统计特性未知可能会引起滤波精度下降甚至发散,针对该问题,提出了一种新的自适应平方根容积卡尔曼滤波算法。所提方法在常规Sage-Husa算法的基础上采用容积规则,推导出了一种适用于非线性系统的自适应噪声统计估计器。仿真结果显示,相对于标准的平方根容积卡尔曼,所提方法在噪声统计特性未知或时变的情况下滤波精度有显著提高。 相似文献
11.
To reduce the computational complexity of matrix inversion, which is the majority of processing in many practical applications, two numerically efficient recursive algorithms (called algorithms I and II, respectively) are presented. Algorithm I is used to calculate the inverse of such a matrix, whose leading principal minors are all nonzero. Algorithm II, whereby, the inverse of an arbitrary nonsingular matrix can be evaluated is derived via improving the algorithm I. The implementation, for algorithm II or I, involves matrix-vector multiplications and vector outer products. These operations are computationally fast and highly parallelizable. MATLAB simulations show that both recursive algorithms are valid. 相似文献
12.
讨论了广义连续随机线性系统的最优递推问题,利用矩阵的奇异值分解理论,给出了广义连续随机线性系统的奇异值标准形式,基于标准形式,在两种情况下,将系统分解成两个子系统,通过对子系统状态估计的研究,得到了该系统的最优递推方程。结果表明,对于广义系统,该方法有效地减少了计算量。 相似文献
13.
Recently, a two-dimensional (2-D) Tsallis entropy thresholding method has been proposed as a new method for image segmentation. But the computation complexity of 2-D Tsallis entropy is very large and becomes an obstacle to real time image processing systems. A fast recursive algorithm for 2-D Tsallis entropy thresholding is proposed. The key variables involved in calculating 2-D Tsallis entropy are written in recursive form. Thus, many repeating calculations are avoided and the computation complexity reduces to O(L2) from O(L4). The effectiveness of the proposed algorithm is illustrated by experimental results. 相似文献
14.
Liu Song Zhong Shuangying & Liu Shaobin School of Sciences Nanchang Univ. Nanchang P. R. China 《系统工程与电子技术(英文版)》2006,17(2):290-295
1 .INTRODUCTIONThe finite-different ti me-domain(FDTD) methodhas been widely used to si mulate the transient so-lutions of electromagnetic wave propagation in va-rious mediaincludingisotropic material ,anisotrop-ic material , dispersive media , and ti me-varyingmedia . Over the past decade years , there havebeen numerous investigations of FDTD dispersivemedia formulations . These include the recursiveconvolution (RC) methods[1 ~5],the auxiliary dif-ferential equation (ADE) methods[6 … 相似文献
15.
递推最小二乘算法在新型无源探测系统中的应用 总被引:1,自引:0,他引:1
针对新型无源探测系统的要求,在原有最小二乘算法的基础上,为缩短定位时间,减少运算量,提出了递推最小二乘算法。同时引入自适应卡尔曼滤波算法对原始定位结果进行了处理。多次计算机仿真结果表明该算法有效地提高了定位的实时性、可靠性和定位精度,能够满足新型无源探测系统的技术要求。 相似文献
16.
针对传统的最小二乘辨识算法要求误差遵循零均值、同方差的正态分布等不足,提出了L∞参数辨识算法。首先将L∞参数辨识问题转化成增加约束条件的线性规划问题最优解的求解问题;然后为了删除辨识中的冗余数据并用于在线辨识,给出了基于线性规划问题递推算法的L∞参数辨识算法。最后给出了仿真,结果验证了算法的有效性。 相似文献