首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 46 毫秒
1.
一种改进的贝叶斯网络结构学习算法   总被引:3,自引:0,他引:3  
贝叶斯网络的结构学习是数据挖掘与知识发现领域的主要研究技术之一,能从大量数据中寻找隐含的概率依赖关系和知识表达模型,对复杂决策任务的建模与求解提供支持,具有重要的研究意义.文章通过分析结构学习方法(1(2和MCMC算法)的基本思想,将两种算法的优点和模型平均的思路结合起来,提出-种改进的贝叶斯网络结构学习算法.仿真实验证明该算法解决了K2和MCMC算法的缺陷,可以在无先验知识的情况下以较快的收敛速度获得较正确、稳定的模型结构.  相似文献   

2.
引入专家知识已成为小数据集条件下贝叶斯网络建模的主流方法,然而,专家知识是否正确直接决定了算法的结果和性能。因此,在考虑专家知识正确性的基础上,本文对贝叶斯网络结构学习问题展开研究。首先,建立一种基于连接概率分布的结构约束模型来表示专家知识,进而结合该约束模型对贝叶斯信息准则(Bayesian information criterions,BIC)评分进行改进;最后,利用K2算法学习贝叶斯网络结构。实验结果表明,在小数据集条件下本文所提算法不仅能将专家知识引入到学习过程中,进而改善学习效果,并且对不完全正确的专家知识有一定的适应性。  相似文献   

3.
基于混合自适应Memetic算法的贝叶斯网络结构学习   总被引:1,自引:0,他引:1  
Memetic算法是一种基于种群的全局搜索和基于个体的局部启发式搜索的结合体,具有较高的全局搜索能力,将其成功应用于贝叶斯网络的结构学习。该算法在基本的遗传算法操作算子中,引入粒子群算法的基本思想,同时利用混沌的遍历性和云自适应的快速收敛性,提出了一种云自适应的混沌变异搜索进行局部搜索,实现全局优化,跳出局部最优。实验证明该算法在贝叶斯网络结构学习中具有很好的效果。  相似文献   

4.
从数据中学习贝叶斯网络结构是一个非确定性多项式困难(non deterministic polynomial hard,NP-hard)问题,当数据样本不充分时难以获得准确的模型,此时利用先验信息是一种有效的途径。但是利用先验信息的过程中如何适应不正确的先验信息,是一个待解决的问题。针对此问题,提出一种融合先验的方法进行贝叶斯网络结构学习,在评分搜索法的两个环节中解决这个问题:第一,提出了新的融合不确定先验信息的评分函数,考虑了先验信息与数据集的权衡。第二,提出了融合不确定先验信息的搜索策略,增强先验信息利用的鲁棒性。所提方法适用于任何启发式搜索。仿真结果表明了所提方法能有效地利用正确的先验信息,而且对错误的先验信息有较强的适应能力。  相似文献   

5.
贝叶斯网络结构学习是数据挖掘与知识发现领域的主要研究技术之一,在网络结构的搜索空间相对较大的情况下,已提出的相关算法往往都会存在算法收敛速度慢、学习到的结果准确性较差的缺陷。提出一种信息论结合粒子群优化的算法,利用互信息限制粒子的初始化,使得粒子群优化算法能在较短的时间内收敛,应用ASIA网络作为仿真模型,并与K2算法比较。实验结果表明,提出的算法能够快速、准确地得到贝叶斯网络结构。  相似文献   

6.
融合先验信息的贝叶斯网络结构学习方法   总被引:1,自引:0,他引:1  
在贝叶斯网络结构学习的过程中,如何采集先验信息并合理利用它对于构建准确的网络结构非常重要。鉴于此,依据有先验信息的贝叶斯网络结构学习的三个环节:先验信息的采集、先验信息的融合和网络结构的优化,首先讨论了现有先验信息获取方法的不足,并提出了基于信念图的先验信息获取方法;其次针对所获取的先验信息通常具有一定的不确性,对最小描述长度测度进行了改进以融合非确定性先验信息;最后依据问题特性对模拟退火算法进行了适当的修改以更好地优化网络结构。实验表明,提出的结构学习方法能够有效地提高网络结构的学习精度。  相似文献   

7.
用于操作风险分析的小样本贝叶斯网络结构学习   总被引:1,自引:0,他引:1  
现有的贝叶斯网络结构学习方法需要大量可靠例子进行复杂的运算,具有低效率和可靠性,而在操作风险管理方面积累大量可靠的例子非常困难.针对问题和实际需求,基于变量之间基本依赖关系、结点之间基本结构、d-separation标准和依赖分析方法进行小样本贝叶斯网络结构学习,分别使用模拟和真实数据进行了实验和分析,结果显示,该方法能够有效地进行小样本数据的贝叶斯网络结构学习.  相似文献   

8.
基于认知学习的最小风险贝叶斯邮件过滤算法   总被引:9,自引:0,他引:9  
提出了超高维向量空间中的一种新的邮件向量表示方法,在考虑邮件误判风险的基础上,给出了一种基于认知学习模式的邮件过滤新算法。该算法模拟人类的认知学习过程,将系统分类与用户识别有效地结合起来,使得邮件过滤时的误判风险最小化。实验结果表明,算法具有较好的学习能力和学习效果,在邮件过滤应用中,能获得较高的查全率和查准率。  相似文献   

9.
基于蚁群优化的贝叶斯网络学习   总被引:2,自引:1,他引:2  
针对贝叶斯网络学习中的混合算法容易缩小搜索空间,同时易陷入局部最优等缺点,提出了基于蚁群优化的贝叶斯网络学习算法。首先应用最大最小父子节点集合算法(max min parents and children, MMPC)来构建无向网络的框架,然后利用蚁群优化算法进行评分〖CD*2〗搜索,通过平衡“开发”和“探索”力度来修补搜索空间并确定网络结构中边的方向。最后应用本算法学习逻辑报警还原机理网(a logical alarm reduction mechanism, ALARM),结果显示本算法减少了丢失边的数量,得到了更接近真实结构的贝叶斯网络。  相似文献   

10.
提出了一种基于径向基链网络(RBFLN)的改进径向基函数(RBF)网络学习算法.网络结构采用RB—FLN模型,添加输入层对输出层的线性映射,在训练过程中基于最大误差学习样本对资源分配网络(RAN)新性条件进行改动,在不满足新性条件时,采用相似度参数对隐层中心和宽度进行调整;而满足新性条件时,对新增隐层节点也通过类均值的方法做出相应的改进.最后通过对无机建筑材料成分分析的仿真表明该算法可有效地简化网络结构,实现样本正确分类,并获得较好的校验能力.  相似文献   

11.
针对复杂环境下自主水下航行器(autonomous underwater vehicle,AUV)组合导航系统中存在噪声不确定或者易发生变化的情况,提出一种贝叶斯网络增强型交互式多模型(interactive multiple model filter based on Bayesian network,BN-IMM)滤波算法。该算法在多模型估计基础上,引入特征变量,并根据变量与系统模型之间存在的因果关系建立贝叶斯网络;利用贝叶斯网络参数修正多模型估计中的模型切换概率,能够降低多模型算法中真实模式识别对先验知识的依赖性。该算法能够解决交互式多模型(interactive multiple model,IMM)算法中模型转换存在滞后、模型概率易发生跳变等问题,增强多模型算法的自适应能力。以陀螺和加速度计的输出作为特征变量建立贝叶斯网络,对AUV组合导航系统进行仿真,结果表明所提出的BN-IMM算法相比于传统的IMM算法能够显著提高机动状态时模型转换速度和估计精度。  相似文献   

12.
Structure learning of Bayesian networks is a wellresearched but computationally hard task.For learning Bayesian networks,this paper proposes an improved algorithm based on unconstrained optimization and ant colony optimization(U-ACO-B) to solve the drawbacks of the ant colony optimization(ACO-B).In this algorithm,firstly,an unconstrained optimization problem is solved to obtain an undirected skeleton,and then the ACO algorithm is used to orientate the edges,thus returning the final structure.In the experimental part of the paper,we compare the performance of the proposed algorithm with ACO-B algorithm.The experimental results show that our method is effective and greatly enhance convergence speed than ACO-B algorithm.  相似文献   

13.
针对小样本下贝叶斯网络参数学习结果不准确的问题,提出一种模糊最大后验估计方法,该方法将模糊理论引入到参数学习中,通过对约束效力的度量,利用隶属度函数来确定超参进行学习,以提高约束使用的准确性。实验证明,所提方法可以有效提高参数学习的精度。除此之外,将所提方法应用到网络安全评估中,将通用漏洞评分系统作为专家先验参数,结合漏洞信息迁移样本来进行参数学习。最后,通过节点和路径安全评估验证了所提方法的有效性。  相似文献   

14.
一种基于信息熵的强化学习算法   总被引:1,自引:1,他引:0  
针对强化学习中探索和利用之间的平衡控制问题,提出了一种基于信息熵的强化学习算法。该算法利用信息熵的概念,定义了一种新的状态重要性测度,度量了状态与目标之间的关联程度,据此设计了一种探索机制,用于自适应调节学习过程中探索和利用之间的平衡;通过设置可变测度阈值的方法,对状态空间进行自主删减,最终生成合适的、规模较小的状态空间,从而大大节约了计算资源,提高了学习速度。仿真结果表明,所提算法具有较好的学习性能。  相似文献   

15.
针对小样本条件下的离散贝叶斯网络参数学习问题,提出一种基于单调性约束的学习算法。首先,给出了单调性约束的数学模型,以表达定性的先验信息;然后,将单调性约束以狄利克雷先验的形式集成到贝叶斯估计中,并利用贝叶斯估计进行参数学习;最后,通过仿真实验与最大似然估计和保序回归方法进行比较。实验结果表明,在小样本条件下,所提算法在准确性上优于最大似然估计和保序回归,但时效性介于二者之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号