共查询到10条相似文献,搜索用时 15 毫秒
1.
基于稀疏表示的图像超分辨率重建快速算法 总被引:1,自引:1,他引:0
基于图像在过完备字典下的稀疏表示,建立了稀疏性正则化的多帧图像超分辨凸变分模型。模型中的正则项刻画了理想图像的稀疏性先验约束,保真项度量其在退化模型下与观测图像的一致性。基于线性化Bregman方法,将正则项替换为其Bregman距离,对保真项进行线性化,从而可将原问题解耦,进而提出求解该模型的两步迭代算法:第一步为仅对正则项的阈值收缩操作,第二步为仅对保真项的梯度下降操作。此方法大幅度降低了计算复杂性,并能够对噪声保持鲁棒。实验结果表明,只需较少次数的迭代就可获得很好的超分辨重建结果,验证了本文模型与算法的有效性。 相似文献
2.
自SRCNN(super-resolution convolutional neural network)将卷积神经网络用于超分辨率图像重建领域以来,人们通过大量的研究证明了使用深度学习的方法能够提高重建图像的效果。针对图像超分辨率网络中参数过多以及图像特征利用不充分导致可用的高频信息较少等问题,提出了一种基于损失提取策略的反馈注意网络(loss extraction feedback attention network,LEFAN),以循环的方式对参数进行复用,同时增加对低分辨率图像特征的重用,以捕获更多的高频信息,对重建过程中造成的损失进行提取并融合到最终的超分辨率图像中。实验结果表明:算法在实现多次利用低分辨率图像的基础上,对潜在的损失进行提取并融合到最终的超分辨率图像中,可以获得较好的图像重建效果。 相似文献
3.
并行组合扩频通信比普通的直扩通信和软扩频通信具有更高的信息传输效率。在接收过程中,如果选出的r个最大扩频序列中有一个序列出错,就会造成大量误码。现有的数据序列映射算法都没有判断和纠错序列出错的能力。提出了基于循环映射的新数据序列映射算法,通过对选取扩频序列增加强约束关系,使新数据序列映射算法具有判断和纠正一个序列出错的能力,大大降低系统误码率。理论分析和仿真结果表明,在同等信噪比下,循环映射数据序列映射算法能使误码率降低2个量级等级,大大提高并行组合扩频通信的可靠性。 相似文献
4.
基于盲均衡的超分辨率图像重建 总被引:4,自引:0,他引:4
超分辨率图像的重建是指从一组低分辨率图像重建出更高分辨率的图像。提出采用盲均衡与凸集投影的方法估计成像系统的冲激响应 ,并实现超分辨率图像的重建。这种图像重建算法不需要了解关于帧间运动模式与帧内模糊类型的先验知识 ,因而更接近实际应用的要求。模拟实验的结果表明了该算法的良好性能 相似文献
5.
针对卫星图像成像过程中成像装置存在极限,导致图像分辨率低的问题,提出了基于神经网络的图像超分辨率重建(neural networks super-resolution reconstruction,NNSR)方法。该方法利用误差反向传播神经网络(back propagation neural networks,BPNN)对样本图像进行学习和训练,利用图像退化模型获取学习样本,采用向量映射加速BP神经网络的收敛,充分融合了低分辨率序列图像中的冗余信息。通过对训练好的神经网络分别进行样本仿真实验和泛化实验,验证了这种图像超分辨率重建方法的有效性。 相似文献
6.
为了解决模糊图像超分辨率重建的问题,将分数阶微积分和凸集投影相结合,实现图像的超分辨率重建。利用分数阶微分卷积获取原始参考帧,通过尺度不变特征变换(scale invariant feature transform,SIFT)配准,采用基于分数阶积分的点扩散函数,运用凸集投影,有效解决超分辨率算法对于模糊图像效果不好的问题,实现了对模糊图像的重建。实验表明,与常见的算法相比,基于分数阶微积分的凸集投影超分辨率重建算法在图像视觉效果和客观指标上均有较好的结果。特别是在图像模糊的情况下,基于稀疏表示的或轮廓模板的算法会增加图像的模糊程度,而所提算法在主观清晰度方面有明显的提高。 相似文献
7.
8.
针对古代壁画分辨率低、纹理细节模糊不清导致壁画观赏性不足和研究价值不高的问题,提出了一种稳定增强生成对抗网络的超分辨率重建算法(stable enhanced super-resolution generative adversarial networks, SESRGAN)。以生成对抗网络为基础框架,生成网络采用密集残差块提取壁画特征,使用VGG(visual geometry group)网络作为判别网络的基本框架判断输入壁画的真假,引入感知损失、内容损失和惩罚损失三个损失共同优化模型。实验结果表明,与其他相关的超分辨率算法进行比较,峰值信噪比平均提高了0.4~2.62 dB,结构相似性提高了0.013~0.027,主观感知评估也有提高。 相似文献
9.
在研究平均二次误差与曲面曲率关系的基础上,提出了变分辨率的曲面重建算法。该算法首先在给定的平均二次误差门限下,自适应于曲面曲率大小,将最小立方体包围盒按八叉树结构分割成许多大小不同的立方体,并在立方体内部用Marching cubes(MC)算法进行等值面提取;然后用垂直投影法对大小不同且又相邻的立方体间产生的缝隙进行拼接,并输出最终的网格模型。算法的主要优点是能自动用较大和较小的三角形分别去逼近曲面的小曲率和大曲率区域,不但能够恢复模型的细节,而且大量减少了三角形数目。应用实例表明,算法效果良好。 相似文献
10.
提出一种基于多重稀疏表示的声纳图像超分辨率重建方法。该方法针对声纳图像的光滑、边缘和纹理3种结构形态,分别利用离散平稳小波变换、contourlet小波变换和Gabor小波变换建立过完备字典,并对多重稀疏表示的声纳图像进行超分辨率重建。实验结果表明,该方法得到的超分辨率图像能够有效保持原始高分辨率图像的几何特征和纹理特征,可以得到更高的峰值信噪比,并且对噪声具有鲁棒性。 相似文献