首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Genomic analysis of metastasis reveals an essential role for RhoC   总被引:124,自引:0,他引:124  
Clark EA  Golub TR  Lander ES  Hynes RO 《Nature》2000,406(6795):532-535
The most damaging change during cancer progression is the switch from a locally growing tumour to a metastatic killer. This switch is believed to involve numerous alterations that allow tumour cells to complete the complex series of events needed for metastasis. Relatively few genes have been implicated in these events. Here we use an in vivo selection scheme to select highly metastatic melanoma cells. By analysing these cells on DNA arrays, we define a pattern of gene expression that correlates with progression to a metastatic phenotype. In particular, we show enhanced expression of several genes involved in extracellular matrix assembly and of a second set of genes that regulate, either directly or indirectly, the actin-based cytoskeleton. One of these, the small GTPase RhoC, enhances metastasis when overexpressed, whereas a dominant-negative Rho inhibits metastasis. Analysis of the phenotype of cells expressing dominant-negative Rho or RhoC indicates that RhoC is important in tumour cell invasion. The genomic approach allows us to identify families of genes involved in a process, not just single genes, and can indicate which molecular and cellular events might be important in complex biological processes such as metastasis.  相似文献   

2.
ICOS is essential for effective T-helper-cell responses   总被引:60,自引:0,他引:60  
The outcome of T-cell responses after T-cell encounter with specific antigens is modulated by co-stimulatory signals, which are required for both lymphocyte activation and development of adaptive immunity. ICOS, an inducible co-stimulator with homology to CD28, is expressed on activated, but not resting T cells, and shows T-cell co-stimulatory function in vitro. ICOS binds specifically to its counter-receptor B7RP-1 (refs 5,6,7), but not to B7-1 or B7-2. Here we provide in vivo genetic evidence that ICOS delivers a co-stimulatory signal that is essential both for efficient interaction between T and B cells and for normal antibody responses to T-cell-dependent antigens. To determine the physiological function of ICOS, we generated and characterized gene-targeted ICOS-deficient mice. In vivo, a lack of ICOS results in severely deficient T-cell-dependent B-cell responses. Germinal centre formation is impaired and immunoglobulin class switching, including production of allergy-mediating IgE, is defective. ICOS-deficient T cells primed in in vivo and restimulated in vitro with specific antigen produce only low levels of interleukin-4, but remain fully competent to produce interferon-gamma.  相似文献   

3.
Iron has a fundamental role in many metabolic processes, including electron transport, deoxyribonucleotide synthesis, oxygen transport and many essential redox reactions involving haemoproteins and Fe-S cluster proteins. Defective iron homeostasis results in either iron deficiency or iron overload. Precise regulation of iron transport in mitochondria is essential for haem biosynthesis, haemoglobin production and Fe-S cluster protein assembly during red cell development. Here we describe a zebrafish mutant, frascati (frs), that shows profound hypochromic anaemia and erythroid maturation arrest owing to defects in mitochondrial iron uptake. Through positional cloning, we show that the gene mutated in the frs mutant is a member of the vertebrate mitochondrial solute carrier family (SLC25) that we call mitoferrin (mfrn). mfrn is highly expressed in fetal and adult haematopoietic tissues of zebrafish and mouse. Erythroblasts generated from murine embryonic stem cells null for Mfrn (also known as Slc25a37) show maturation arrest with severely impaired incorporation of 55Fe into haem. Disruption of the yeast mfrn orthologues, MRS3 and MRS4, causes defects in iron metabolism and mitochondrial Fe-S cluster biogenesis. Murine Mfrn rescues the defects in frs zebrafish, and zebrafish mfrn complements the yeast mutant, indicating that the function of the gene may be highly conserved. Our data show that mfrn functions as the principal mitochondrial iron importer essential for haem biosynthesis in vertebrate erythroblasts.  相似文献   

4.
Sortilin (approximately 95 kDa) is a member of the recently discovered family of Vps10p-domain receptors, and is expressed in a variety of tissues, notably brain, spinal cord and muscle. It acts as a receptor for neurotensin, but predominates in regions of the nervous system that neither synthesize nor respond to this neuropeptide, suggesting that sortilin has additional roles. Sortilin is expressed during embryogenesis in areas where nerve growth factor (NGF) and its precursor, proNGF, have well-characterized effects. These neurotrophins can be released by neuronal tissues, and they regulate neuronal development through cell survival and cell death signalling. NGF regulates cell survival and cell death via binding to two different receptors, TrkA and p75NTR (ref. 10). In contrast, proNGF selectively induces apoptosis through p75NTR but not TrkA. However, not all p75NTR-expressing cells respond to proNGF, suggesting that additional membrane proteins are required for the induction of cell death. Here we report that proNGF creates a signalling complex by simultaneously binding to p75NTR and sortilin. Thus sortilin acts as a co-receptor and molecular switch governing the p75NTR-mediated pro-apoptotic signal induced by proNGF.  相似文献   

5.
Bundock P  Hooykaas P 《Nature》2005,436(7048):282-284
A significant proportion of the genomes of higher plants and vertebrates consists of transposable elements and their derivatives. Autonomous DNA type transposons encode a transposase that enables them to mobilize to a new chromosomal position in the host genome by a cut-and-paste mechanism. As this is potentially mutagenic, the host limits transposition through epigenetic gene silencing and heterochromatin formation. Here we show that a transposase from Arabidopsis thaliana that we named DAYSLEEPER is essential for normal plant growth; it shares several characteristics with the hAT (hobo, Activator, Tam3) family of transposases. DAYSLEEPER was isolated as a factor binding to a motif (Kubox1) present in the upstream region of the Arabidopsis DNA repair gene Ku70. This motif is also present in the upstream regions of many other plant genes. Plants lacking DAYSLEEPER or strongly overexpressing this gene do not develop in a normal manner. Furthermore, DAYSLEEPER overexpression results in the altered expression of many genes. Our data indicate that transposase-like genes can be essential for plant development and can also regulate global gene expression. Thus, transposases can become domesticated by the host to fulfil important cellular functions.  相似文献   

6.
Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia   总被引:83,自引:0,他引:83  
The vanilloid receptor-1 (VR1) is a ligand-gated, non-selective cation channel expressed predominantly by sensory neurons. VR1 responds to noxious stimuli including capsaicin, the pungent component of chilli peppers, heat and extracellular acidification, and it is able to integrate simultaneous exposure to these stimuli. These findings and research linking capsaicin with nociceptive behaviours (that is, responses to painful stimuli in animals have led to VR1 being considered as important for pain sensation. Here we have disrupted the mouse VR1 gene using standard gene targeting techniques. Small diameter dorsal root ganglion neurons isolated from VR1-null mice lacked many of the capsaicin-, acid- and heat-gated responses that have been previously well characterized in small diameter dorsal root ganglion neurons from various species. Furthermore, although the VR1-null mice appeared normal in a wide range of behavioural tests, including responses to acute noxious thermal stimuli, their ability to develop carrageenan-induced thermal hyperalgesia was completely absent. We conclude that VR1 is required for inflammatory sensitization to noxious thermal stimuli but also that alternative mechanisms are sufficient for normal sensation of noxious heat.  相似文献   

7.
Hattori D  Demir E  Kim HW  Viragh E  Zipursky SL  Dickson BJ 《Nature》2007,449(7159):223-227
Neurons are thought to use diverse families of cell-surface molecules for cell recognition during circuit assembly. In Drosophila, alternative splicing of the Down syndrome cell adhesion molecule (Dscam) gene potentially generates 38,016 closely related transmembrane proteins of the immunoglobulin superfamily, each comprising one of 19,008 alternative ectodomains linked to one of two alternative transmembrane segments. These ectodomains show isoform-specific homophilic binding, leading to speculation that Dscam proteins mediate cell recognition. Genetic studies have established that Dscam is required for neural circuit assembly, but the extent to which isoform diversity contributes to this process is not known. Here we provide conclusive evidence that Dscam diversity is essential for circuit assembly. Using homologous recombination, we reduced the entire repertoire of Dscam ectodomains to just a single isoform. Neural circuits in these mutants are severely disorganized. Furthermore, we show that it is crucial for neighbouring neurons to express distinct isoforms, but that the specific identity of the isoforms expressed in an individual neuron is unimportant. We conclude that Dscam diversity provides each neuron with a unique identity by which it can distinguish its own processes from those of other neurons, and that this self-recognition is essential for wiring the Drosophila brain.  相似文献   

8.
Overexpression of the polycomb group gene Bmi1 promotes cell proliferation and induces leukaemia through repression of Cdkn2a (also known as ink4a/Arf) tumour suppressors. Conversely, loss of Bmi1 leads to haematological defects and severe progressive neurological abnormalities in which de-repression of the ink4a/Arf locus is critically implicated. Here, we show that Bmi1 is strongly expressed in proliferating cerebellar precursor cells in mice and humans. Using Bmi1-null mice we demonstrate a crucial role for Bmi1 in clonal expansion of granule cell precursors both in vivo and in vitro. Deregulated proliferation of these progenitor cells, by activation of the sonic hedgehog (Shh) pathway, leads to medulloblastoma development. We also demonstrate linked overexpression of BMI1 and patched (PTCH), suggestive of SHH pathway activation, in a substantial fraction of primary human medulloblastomas. Together with the rapid induction of Bmi1 expression on addition of Shh or on overexpression of the Shh target Gli1 in cerebellar granule cell cultures, these findings implicate BMI1 overexpression as an alternative or additive mechanism in the pathogenesis of medulloblastomas, and highlight a role for Bmi1-containing polycomb complexes in proliferation of cerebellar precursor cells.  相似文献   

9.
10.
Imaizumi T  Tran HG  Swartz TE  Briggs WR  Kay SA 《Nature》2003,426(6964):302-306
Adaptation to seasonal change is a crucial component of an organism's survival strategy. To monitor seasonal variation, organisms have developed the capacity to measure day length (photoperiodism). Day-length assessment involves the photoperiodic control of flowering in Arabidopsis thaliana, whereby the coincidence of light and high expression of CONSTANS (CO) induces the expression of FLOWERING LOCUS T (FT), leading to flowering in long-day conditions. Although controlling CO expression is clearly a key step in day-length discrimination, the mechanism that generates day-length-dependent CO expression remains unknown. Here we show that the clock-controlled FLAVIN-BINDING, KELCH REPEAT, F-BOX (FKF1) protein has an essential role in generating the diurnal CO peak and that this function is dependent on light. We show that a recombinant FKF1 LIGHT, OXYGEN OR VOLTAGE (LOV) domain binds the chromophore flavin mononucleotide and undergoes light-induced photochemistry, indicating that FKF1 may function as a photoperiodic blue-light receptor. It is likely that the circadian control of FKF1 expression and the light regulation of FKF1 function coincide to control the daytime CO waveform precisely, which in turn is crucial for day-length discrimination by Arabidopsis.  相似文献   

11.
Cyclic electron flow around photosystem I is essential for photosynthesis   总被引:4,自引:0,他引:4  
Photosynthesis provides at least two routes through which light energy can be used to generate a proton gradient across the thylakoid membrane of chloroplasts, which is subsequently used to synthesize ATP. In the first route, electrons released from water in photosystem II (PSII) are eventually transferred to NADP+ by way of photosystem I (PSI). This linear electron flow is driven by two photochemical reactions that function in series. The cytochrome b6f complex mediates electron transport between the two photosystems and generates the proton gradient (DeltapH). In the second route, driven solely by PSI, electrons can be recycled from either reduced ferredoxin or NADPH to plastoquinone, and subsequently to the cytochrome b6f complex. Such cyclic flow generates DeltapH and thus ATP without the accumulation of reduced species. Whereas linear flow from water to NADP+ is commonly used to explain the function of the light-dependent reactions of photosynthesis, the role of cyclic flow is less clear. In higher plants cyclic flow consists of two partially redundant pathways. Here we have constructed mutants in Arabidopsis thaliana in which both PSI cyclic pathways are impaired, and present evidence that cyclic flow is essential for efficient photosynthesis.  相似文献   

12.
ICOS co-stimulatory receptor is essential for T-cell activation and function   总被引:61,自引:0,他引:61  
T-lymphocyte activation and immune function are regulated by co-stimulatory molecules. CD28, a receptor for B7 gene products, has a chief role in initiating T-cell immune responses. CTLA4, which binds B7 with a higher affinity, is induced after T-cell activation and is involved in downregulating T-cell responses. The inducible co-stimulatory molecule (ICOS), a third member of the CD28/CTLA4 family, is expressed on activated T cells. Its ligand B7H/B7RP-1 is expressed on B cells and in non-immune tissues after injection of lipopolysaccharide into animals. To understand the role of ICOS in T-cell activation and function, we generated and analysed ICOS-deficient mice. Here we show that T-cell activation and proliferation are defective in the absence of ICOS. In addition, ICOS -/- T cells fail to produce interleukin-4 when differentiated in vitro or when primed in vivo. ICOS is required for humoral immune responses after immunization with several antigens. ICOS-/- mice showed greatly enhanced susceptibility to experimental autoimmune encephalomyelitis, indicating that ICOS has a protective role in inflammatory autoimmune diseases.  相似文献   

13.
The trans-activator gene of HTLV-III is essential for virus replication   总被引:1,自引:0,他引:1  
Studies of the genomic structure of human T-lymphotropic virus type III (HTLV-III) and related viruses, implicated as the causal agent of acquired immune deficiency syndrome (AIDS), have identified a sixth open reading frame in addition to the five previously known within the genome (gag, pol, sor, env and 3'orf). This gene, called tat-III, lies between the sor and env genes and is able to mediate activation, in a trans configuration, of the genes linked to HTLV-III long terminal repeat (LTR) sequences. We now present evidence that the product of tat-III is an absolute requirement for virus expression. We show that derivatives of a biologically competent molecular clone of HTLV-III, in which the tat-III gene is deleted or the normal splicing abrogated, failed to produce or expressed unusually low levels of virus, respectively, when transfected into T-cell cultures. The capacity of these tat-III-defective genomes was transiently restored by co-transfection of a plasmid clone containing a functional tat-III gene or by introducing the TAT-III protein itself. As HTLV-III and related viruses are the presumed causal agents of AIDS and associated conditions, the observation that tat-III is critical for HTLV-III replication has important clinical implications, and suggests that specific inhibition of the activity of tat-III could be a novel and effective therapeutic approach to the treatment of AIDS.  相似文献   

14.
MOR1 is essential for organizing cortical microtubules in plants   总被引:56,自引:0,他引:56  
Microtubules orchestrate cell division and morphogenesis, but how they disassemble and reappear at different subcellular locations is unknown. Microtubule organizing centres are thought to have an important role, but in higher plants microtubules assemble in ordered configurations even though microtubule organizing centres are inconspicuous or absent. Plant cells generate highly organized microtubule arrays that coordinate mitosis, cytokinesis and expansion. Inhibiting microtubule assembly prevents chromosome separation, blocks cell division and impairs growth polarity. Microtubules are essential for the formation of cell walls, through an array of plasma-membrane-associated cortical microtubules whose control mechanisms are unknown. Using a genetic strategy to identify microtubule organizing factors in Arabidopsis thaliana, we isolated temperature-sensitive mutant alleles of the MICROTUBULE ORGANIZATION 1 (MOR1) gene. Here we show that MOR1 is the plant version of an ancient family of microtubule-associated proteins. Point mutations that substitute single amino-acid residues in an amino-terminal HEAT repeat impart reversible temperature-dependent cortical microtubule disruption, showing that MOR1 is essential for cortical microtubule organization.  相似文献   

15.
Brand A  Behrend O  Marquardt T  McAlpine D  Grothe B 《Nature》2002,417(6888):543-547
Microsecond differences in the arrival time of a sound at the two ears (interaural time differences, ITDs) are the main cue for localizing low-frequency sounds in space. Traditionally, ITDs are thought to be encoded by an array of coincidence-detector neurons, receiving excitatory inputs from the two ears via axons of variable length ('delay lines'), to create a topographic map of azimuthal auditory space. Compelling evidence for the existence of such a map in the mammalian lTD detector, the medial superior olive (MSO), however, is lacking. Equally puzzling is the role of a--temporally very precise glycine--mediated inhibitory input to MSO neurons. Using in vivo recordings from the MSO of the Mongolian gerbil, we found the responses of ITD-sensitive neurons to be inconsistent with the idea of a topographic map of auditory space. Moreover, local application of glycine and its antagonist strychnine by iontophoresis (through glass pipette electrodes, by means of an electric current) revealed that precisely timed glycine-controlled inhibition is a critical part of the mechanism by which the physiologically relevant range of ITDs is encoded in the MSO. A computer model, simulating the response of a coincidence-detector neuron with bilateral excitatory inputs and a temporally precise contralateral inhibitory input, supports this conclusion.  相似文献   

16.
17.
The plastid clpP1 protease gene is essential for plant development   总被引:1,自引:0,他引:1  
Kuroda H  Maliga P 《Nature》2003,425(6953):86-89
  相似文献   

18.
19.
Fibulin-5/DANCE is essential for elastogenesis in vivo.   总被引:19,自引:0,他引:19  
The elastic fibre system has a principal role in the structure and function of various types of organs that require elasticity, such as large arteries, lung and skin. Although elastic fibres are known to be composed of microfibril proteins (for example, fibrillins and latent transforming growth factor (TGF)-beta-binding proteins) and polymerized elastin, the mechanism of their assembly and development is not well understood. Here we report that fibulin-5 (also known as DANCE), a recently discovered integrin ligand, is an essential determinant of elastic fibre organization. fibulin-5-/- mice generated by gene targeting exhibit a severely disorganized elastic fibre system throughout the body. fibulin-5-/- mice survive to adulthood, but have a tortuous aorta with loss of compliance, severe emphysema, and loose skin (cutis laxa). These tissues contain fragmented elastin without an increase of elastase activity, indicating defective development of elastic fibres. Fibulin-5 interacts directly with elastic fibres in vitro, and serves as a ligand for cell surface integrins alphavbeta3, alphavbeta5 and alpha9beta1 through its amino-terminal domain. Thus, fibulin-5 may provide anchorage of elastic fibres to cells, thereby acting to stabilize and organize elastic fibres in the skin, lung and vasculature.  相似文献   

20.
Erythrocyte invasion by Plasmodium falciparum is central to the pathogenesis of malaria. Invasion requires a series of extracellular recognition events between erythrocyte receptors and ligands on the merozoite, the invasive form of the parasite. None of the few known receptor-ligand interactions involved are required in all parasite strains, indicating that the parasite is able to access multiple redundant invasion pathways. Here, we show that we have identified a receptor-ligand pair that is essential for erythrocyte invasion in all tested P. falciparum strains. By systematically screening a library of erythrocyte proteins, we have found that the Ok blood group antigen, basigin, is a receptor for PfRh5, a parasite ligand that is essential for blood stage growth. Erythrocyte invasion was potently inhibited by soluble basigin or by basigin knockdown, and invasion could be completely blocked using low concentrations of anti-basigin antibodies; importantly, these effects were observed across all laboratory-adapted and field strains tested. Furthermore, Ok(a-) erythrocytes, which express a basigin variant that has a weaker binding affinity for PfRh5, had reduced invasion efficiencies. Our discovery of a cross-strain dependency on a single extracellular receptor-ligand pair for erythrocyte invasion by P. falciparum provides a focus for new anti-malarial therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号