首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
微波辅助制备甜菜渣活性炭   总被引:1,自引:0,他引:1  
为了使甜菜渣得到更加充分有效的利用,本文探究了以甜菜渣为原料、氯化锌为活化剂、微波辅助制备甜菜渣活性炭的可行性。本文研究了甜菜渣和氯化锌溶液的比例(料液比)、氯化锌浓度、微波功率和辐照时间对活性炭吸附性能和产率的影响,并用氮气等温吸附、红外光谱和扫描电镜分析了最优制备条件下活性炭的比表面积、表面官能团和微观孔结构,得出其制备的最佳工艺条件为:料液比1∶6,氯化锌浓度30%,微波功率700 W和微波时间10 min。相应的活性炭的碘吸附量为1127.57 mg/g,亚甲基蓝吸附量为217.7 mg/g,产率为25.9%,BET比表面积为927.36 m2/g,总孔容为0.39 cm3/g,且表面具有含氧官能团和较好的孔结构。实验结果证实,以甜菜渣为原料、氯化锌为活化剂的微波辅助制备甜菜渣活性炭是可行的,为开发甜菜渣的高附加值产品提供了理论依据。  相似文献   

2.
伴随着国内水处理行业的迅速发展,产量巨大的污泥亟需找到新的资源化方式。本研究利用正交实验方法设计制备污泥吸附剂,并在此基础上考察了制备过程中各因素对吸附剂表面结构及吸附性能的影响,结果表明:微波功率、辐照时间、磷酸浓度以及磷酸污泥质量比均会显著影响污泥基吸附剂的表面官能团、孔结构以及吸附性能,但各因素对三者的影响程度并不相同;以孔结构、表面官能团以及吸附性能为考察指标时,获得的最优污泥基吸附剂制备工艺条件并不相同;污泥吸附剂是一类性能优良的有机污染物吸附剂。综合考虑亚甲基蓝、酸性品红以及碘的吸附时,污泥基吸附剂的最优制备工艺条件为:微波功率420 W,辐照时间16 min,磷酸浓度40%,磷酸污泥质量比0.5∶1。  相似文献   

3.
以石油焦和含油污泥为原料,在活化剂的作用下共同热解制备多孔活性炭材料。将得到的多孔碳进行碘吸附值、苯吸附值、BET等测定,确定多孔碳的比表面积及孔结构。研究硝酸预处理石油焦对多孔碳性能的影响以及微波功率和微波辐照时间对多孔碳的影响。结果表明:经硝酸氧化处理所得的活性炭吸附性能明显提高;微波功率越高对物料的活化作用越好,经微波活化的活性炭吸附性能越好;在微波功率800 W条件下,比表面积最大为1 396.91m2/g;微波加热时间约30 min可获得明显的催化效果。  相似文献   

4.
微波法制备玉米穗轴活性炭的初步研究   总被引:1,自引:0,他引:1  
以玉米穗轴为原料,Na2CO3为活化剂,采用微波加热来制备活性炭,研究了微波功率、辐照时间、Na2CO3浓度、固液比等因素对活性炭的影响。通过正交实验,确定了最佳工艺参数。结果表明,微波功率280W,Na2CO3浓度10%,辐照时间10min,液固比3:1时活性炭的碘值最大;微波功率462W,Na2CO3浓度20%,辐照时间9min,液固比为2:1时活性炭的产率最高。方差分析表明对碘值来说,各因素的影响均未达到显著水平;对产率而言,Na2CO3浓度的影响是高度显著的,微波辐照时间也是显著的。  相似文献   

5.
分别在600,700和800℃下对活性炭进行微波辐照加热改性.采用比表面积及孔径分析仪、Boehm滴定、傅立叶转换红外光谱对活性炭的物化性质进行表征.并且在10℃下以甲醇为吸附质进行固定床吸附实验.研究表明:微波改性后,活性炭的比表面积、总孔容小幅度减小,但微孔比表面积显著增大;随着温度升高,活性炭表面酸性基团大量分解,碱性基团逐渐形成.Langmuir方程和Freundlich方程均能较好的描述甲醇在活性炭上的吸附.准二阶动力学方程最适合描述甲醇的动态吸附过程,说明甲醇吸附是一个物理和化学复合的吸附过程,吸附受到活性炭表面官能团的影响.颗粒内扩散模型拟合结果分为3个线性阶段:表面吸附阶段、渐近吸附阶段和吸附平衡阶段.微波改性后活性炭对甲醇的吸附能均增大,吸附能与活性炭表面含氮官能团总量成正比.  相似文献   

6.
以废料柚子皮为原料,ZnCl2为活化剂,采用微波辐射法制备了活性炭.采用正交实验研究了活化剂浓度、微波功率和活化时间对活性炭得率和吸附性能的影响.同时采用美国ASAP-2020吸附仪测定了所制备活性炭的Na吸附脱附等温线和孔径分布,采用红外光谱分析了样品的表面官能团,采用扫描电镜观察了样品的表面形貌.结果表明:ZnCl2质量浓度为50%,微波功率为850W,活化时间为8min工艺条件下制得的活性炭碘吸附值为1024mg/g;亚甲基蓝吸附值为160mL/g,产率为34.5%;比表面积为1490mm/g,总孔容为1.574cm^3/g,平均孔径为4.225nm.该活性炭为中孔型,比市售活性炭有更加发达的孔隙结构及更多的表面含氧基团,吸附性能优于市售活性炭.  相似文献   

7.
采用微波加热法,以制药厂污泥为原料,氯化锌为活化剂制备污泥活性炭.结果表明,微波功率、辐照时间和氯化锌浓度对污泥活性炭吸附性能具有较大的影响.制备污泥吸附剂的适宜条件为:干污泥与CuSO4质量比为20∶1,ZnCl2浓度为4 mol/L,微波功率为464W,辐照时间为5min.利用该活性炭处理制药废水,脱色率和COD去除率分别达到90.2%和91.6%.  相似文献   

8.
研究了糠醛渣对Cr3+的吸附性能.通过低温N2吸附-脱附等温线和红外光谱对糠醛渣的结构进行了表征;室温下,考察了吸附时间、溶液pH、Cr3+的初始质量浓度和糠醛渣的粒径对糠醛渣吸附Cr3+的影响.结果表明,糠醛渣为介孔吸附材料并且表面含氧官能团很丰富;当1 000μm的糠醛渣加入量为1.0g,吸附时间为25min,溶液pH=4,Cr3+的初始质量浓度ρ0=4.9mg/L时,溶液中Cr3+的去除率为84.2%,且随ρ0的增加而增大.糠醛渣良好的孔结构使其作为吸附剂,实现了以废治废的目的.  相似文献   

9.
氯化锌活化棉杆制备活性炭及孔结构表征   总被引:3,自引:0,他引:3  
研究了以棉花秸秆为原料,采用微波辐射氯化锌法制备活性炭的可行性。利用正交实验探讨了氯化锌加入率、浸渍时间、微波功率及活化时间对产品活性炭得率和吸附性能的影响。得到了微波辐射氯化锌法制备棉秆活性炭的最佳工艺:氯化锌与棉秆比例以1.6:1,浸渍时间24h,微波功率为560W,微波辐射时间为9min。用此工艺条件制得活性炭的亚甲基兰吸附值、碘吸附值、产率分别为1002.92mg/g,12.8mL/0.1g和38.92%;通过电镜扫描和自动物理化学吸附仪对活性炭孔结构进行表征,表明该活性炭的BET比表面积为794.84m^2/g,属中孔发达的活性炭。  相似文献   

10.
以某城市污水处理厂剩余污泥为原料,磷酸为活化剂,采用微波辐照活化法制备污泥活性炭,用FT-IR,DSC,ASAP 2010对其结构进行了表征.以甲基紫为吸附质,考察了其吸附性能.结果表明,在磷酸浓度为30%、微波辐照时间为4min、微波功率为464 W时,其碘吸附值为302mg/g,比表面积为81.5m2/g.污泥活性炭对甲基紫的吸附等温方程同时符合Langmuir和Freundlich方程,应用假一级和假二级反应动力学模型对实验数据进行拟合,发现污泥活性炭吸附甲基紫更符合假二级反应动力学方程.  相似文献   

11.
A facile and green preparation of high surface area activated carbons with mixed microporosity and mesoporosity from durian shell waste is reported in this work. The pore structure and surface chemistry of the parent carbon were modified by the combination of ultrasonication and microwave irradiation techniques. The effects of temperature and time in the ultrasonication treatment and power output and time in the microwave irradiation were studied. The electrochemical performance of carbon electrodes for supercapacitors was tested by cyclic voltammeter (CV) and galvanostatic charge–discharge. The results show that the capacitive energy storage of electrodes is critically dependent on the microporosity and surface chemistry of activated carbons. The highest electrode capacitance in this work was 103.6 F/g that prepared from activated carbon modified at an ultrasonication temperature of 323.15 K for 10 min and microwave power output of 900 W for 10 min.  相似文献   

12.
采用微波辐射技术,建立了酸性黄染料废水的处理工艺.以颗粒活性炭为吸附催化剂,考察了活性炭用量、微波辐射功率和微波辐射时间等因素对废水处理效果的影响.结果表明,2g活性炭处理50mL浓度为50mg/L的酸性黄染料水溶液时,在微波炉功率800W、反应时间7min时,可以得到最佳的处理效果。  相似文献   

13.
采用微波高温烧结炉分别在600℃,700℃和800℃下对商业活性炭进行改性,利用比表面积及孔径分析仪、Boehm滴定、傅立叶变换红外光谱比较分析活性炭的比表面积和孔结构、表面官能团等物化性质.以1,2-二氯乙烷为吸附质进行固定床吸附实验.研究表明:改性后活性炭表面酸性基团减少,碱性基团随温度升高增多;比表面积、孔容减小,微孔比表面积增加;活性炭对1,2-二氯乙烷的吸附量排序为:AC-800AC-700AC-600AC-0;灰色关联度分析结果表明:改性活性炭的物理结构特性对吸附量的影响大于表面基团;D-R模型和动力学模型拟合结果都表明活性炭对1,2-二氯乙烷的吸附主要为物理吸附.  相似文献   

14.
吸附SO2饱和活性炭纤维的微波解吸性能研究   总被引:1,自引:0,他引:1  
通过微波辐照再生吸附SO2饱和的活性炭纤维的实验研究发现,连续六次吸附、解吸后,活性炭纤维吸附容量明显提高,更易被解吸,SO2回收率维持在93%以上,最终活性炭纤维的损耗率在10%以内。实验中的最佳解吸操作条件为微波辐照功率700W、辐照时间240s、空床气速0.071m/s、床层厚度40mm。结果表明,微波解吸具有解吸时间短、吸附容量恢复好、活性炭纤维损耗率较低、解吸气体浓度高、S02便于回收等优点,具有很好的经济实用性。  相似文献   

15.
为探究U(VI)溶液初始浓度、溶液pH、活性炭投加量、吸附时间对U(VI)去除效果的影响,以农业废弃物柚子皮为原料、氯化锌为活化剂、微波为热源,制备了柚皮基活性炭,将制得的最优活性炭进行U(VI)吸附实验,并分析了其吸附动力学方程,探讨了其吸附U(VI)的机理。实验结果表明:在活化浓度为30%、活化剂浸渍时间为24 h、微波功率为700 W、辐照时间为90 s的条件下,柚皮基活性炭对碘的吸附值最高,达到769.9 mg/g;在U(VI)溶液初始质量浓度为5 mg/L、溶液pH为7、活性炭投加量为0.6 g/L、吸附时间为24 h时可以达到吸附平衡,U(VI)的饱和吸附容量为8.25 mg/g,吸附率为99.01%;其吸附U(VI)的行为符合准二级动力学模型,吸附U(VI)前后自身结构发生较大变化,柚皮基活性炭对U(VI)的吸附是一种以化学吸附为主、活性炭表面的羰基、CC、羟基和羧酸等官能团与U(VI)水解后的离子作用并存的吸附方式。  相似文献   

16.
微波辐射下固体酸催化合成异烟酸乙酯   总被引:2,自引:1,他引:1  
在微波辐射下,以异烟酸和乙醇为原料,以活性炭固载对甲苯磺酸作催化剂,合成了异烟酸乙酯.最佳工艺条件:醇酸物质的量比为8∶ 1,催化剂用量为 1.0 g,微波辐射时间为 10 min,微波辐射功率为 200 W,酯化产率达 97.18%.另外通过实验发现,微波辐射下,反应速率及产率都明显高于常规加热方式.  相似文献   

17.
微波辐射制备PMMA-BMA树脂及其吸附油烟性能   总被引:1,自引:0,他引:1  
本文提出应用微波辐射法制备聚甲基丙烯酸甲酯-甲基丙烯酸丁脂(PMMA-BMA)吸油烟树脂,采用扫描电子显微镜对吸油烟树脂的表面形貌和孔结构进行了表征,研究了单体配比、引发剂用量、交联剂用量、微波功率对树脂吸附气相油烟性能的影响.结果表明,当MMA/BMA配比为0.8:1,引发剂、分散剂和交联剂的用量分别为0.4%、0.3%和0.35%时,所合成的树脂其吸油烟率达到最大,此时树脂表面形成了较多和较深的孔.与常规条件下的合成方法相比,使用微波辐射合成WRT树脂不仅可缩短一半以上的反应时间,而且其吸附气相油烟率也高于普通合成法得到的NR树脂.此外,微波辐射合成的树脂其吸附气相油烟性能还优于普通活性炭和商品的G-1651型高吸油树脂.  相似文献   

18.
采用低温微波法(60、120、180 W)和电加热法对载甲苯松木活性炭进行再生。比较了这两种再生方法下活性炭的再生效率、升温速率、能耗,并分析了再生前后活性炭的物理化学性能。结果表明:经过5次吸附—微波辐射再生之后,活性炭吸附量基本保持原有吸附量的45%。随着微波功率从60 W 升高到120 W,再生时间从60 min降低到22 min,再生效率从1.7%/min增加到4.5%/min。而传统电加热再生法再生时间为180 min, 是微波法的3~6倍; 功率为60 W的微波加热法的升温速率为178 ℃/min,而电加热法升温速率只有9 ℃/min; 从能耗角度看,微波再生法的能耗为29.7 kJ/g,而电加热法的能耗则为74.3 kJ/g; 并且经检测微波法再生后活性炭的孔隙结构和官能团未发生改变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号