首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chloride and potassium channels in cystic fibrosis airway epithelia   总被引:5,自引:0,他引:5  
M J Welsh  C M Liedtke 《Nature》1986,322(6078):467-470
Cystic fibrosis, the most common lethal genetic disease in Caucasians, is characterized by a decreased permeability in sweat gland duct and airway epithelia. In sweat duct epithelium, a decreased Cl- permeability accounts for the abnormally increased salt content of sweat. In airway epithelia a decreased Cl- permeability, and possibly increased sodium absorption, may account for the abnormal respiratory tract fluid. The Cl- impermeability has been localized to the apical membrane of cystic fibrosis airway epithelial cells. The finding that hormonally regulated Cl- channels make the apical membrane Cl- permeable in normal airway epithelial cells suggested abnormal Cl- channel function in cystic fibrosis. Here we report that excised, cell-free patches of membrane from cystic fibrosis epithelial cells contain Cl- channels that have the same conductive properties as Cl- channels from normal cells. However, Cl- channels from cystic fibrosis cells did not open when they were attached to the cell. These findings suggest defective regulation of Cl- channels in cystic fibrosis epithelia; to begin to address this issue, we performed two studies. First, we found that isoprenaline, which stimulates Cl- secretion, increases cellular levels of cyclic AMP in a similar manner in cystic fibrosis and non-cystic fibrosis epithelial cells. Second, we show that adrenergic agonists open calcium-activated potassium channels, indirectly suggesting that calcium-dependent stimulus-response coupling is intact in cystic fibrosis. These data suggest defective regulation of Cl- channels at a site distal to cAMP accumulation.  相似文献   

2.
The cystic fibrosis transmembrane conductance regulator (CFTR) was expressed in cultured cystic fibrosis airway epithelial cells and Cl- channel activation assessed in single cells using a fluorescence microscopic assay and the patch-clamp technique. Expression of CFTR, but not of a mutant form of CFTR (delta F508), corrected the Cl- channel defect. Correction of the phenotypic defect demonstrates a causal relationship between mutations in the CFTR gene and defective Cl- transport which is the hallmark of the disease.  相似文献   

3.
Chloride impermeability of epithelial cells can account for many of the experimental and clinical manifestations of cystic fibrosis (CF). Activation of apical-membrane Cl- channels by cyclic AMP-mediated stimuli is defective in CF airway epithelial cells, despite normal agonist-induced increases in cellular cAMP levels. This defect in Cl- channel regulation has been localized to the apical membrane by exposing the cytoplasmic surface of excised membrane patches to the catalytic subunit (C subunit) of cAMP-dependent protein kinase and ATP. In membranes from normal cells, C-subunit activated Cl- channels with properties identical to those stimulated by cAMP-dependent agonists during cell-attached recording. Activation by the C subunit was not observed in CF membranes, but the presence of Cl- channels was verified by voltage-induced activation. The failure of the C subunit to activate the Cl- channels of CF membranes indicates that the block in their cAMP-mediated activation lies distal to induction of cAMP-dependent protein kinase activity and focuses our attention on the Cl- channel and its membrane-associated regulatory proteins as the probable site of the CF defect.  相似文献   

4.
The bacterium Pseudomonas aeruginosa permanently colonizes cystic fibrosis lungs despite aggressive antibiotic treatment. This suggests that P. aeruginosa might exist as biofilms--structured communities of bacteria encased in a self-produced polymeric matrix--in the cystic fibrosis lung. Consistent with this hypothesis, microscopy of cystic fibrosis sputum shows that P. aeruginosa are in biofilm-like structures. P. aeruginosa uses extracellular quorum-sensing signals (extracellular chemical signals that cue cell-density-dependent gene expression) to coordinate biofilm formation. Here we found that cystic fibrosis sputum produces the two principal P. aeruginosa quorum-sensing signals; however, the relative abundance of these signals was opposite to that of the standard P. aeruginosa strain PAO1 in laboratory broth culture. When P. aeruginosa sputum isolates were grown in broth, some showed quorum-sensing signal ratios like those of the laboratory strain. When we grew these isolates and PAO1 in a laboratory biofilm model, the signal ratios were like those in cystic fibrosis sputum. Our data support the hypothesis that P. aeruginosa are in a biofilm in cystic fibrosis sputum. Moreover, quorum-sensing signal profiling of specific P. aeruginosa strains may serve as a biomarker in screens to identify agents that interfere with biofilm development.  相似文献   

5.
M Li  J D McCann  C M Liedtke  A C Nairn  P Greengard  M J Welsh 《Nature》1988,331(6154):358-360
Chloride (Cl-) secretion by the airway epithelium regulates, in part, the quantity and composition of the respiratory tract fluid, thereby facilitating mucociliary clearance. The rate of Cl- secretion is controlled by apical membrane Cl- channels. Apical Cl- channels are opened and Cl- secretion is stimulated by a variety of hormones and neurotransmitters that increase intracellular levels of cyclic AMP (cAMP). In cystic fibrosis (CF), a common lethal genetic disease of Caucasians, airway, sweat-gland duct, secretory-coil and possibly other epithelia are anion impermeable. This abnormality may explain several of the clinical manifestations of the disease. The Cl- impermeability in CF-airway epithelia has been localized to the apical cell membrane, where regulation of Cl- channels is abnormal: hormonal secretagogues stimulate cAMP accumulation appropriately but Cl- channels fail to open. Here we report that the purified catalytic subunit of cAMP-dependent protein kinase plus ATP opens Cl- channels in excised, cell-free patches of membrane from normal cells, but fails to open Cl- channels in CF cells. These results indicate that in normal cells, the cAMP-dependent protein kinase phosphorylates the Cl- channel or an associated regulatory protein, causing the channel to open. The failure of CF Cl- channels to open suggests a defect either in the channel or in such an associated regulatory protein.  相似文献   

6.
Chloride impermeability in cystic fibrosis   总被引:46,自引:0,他引:46  
P M Quinton 《Nature》1983,301(5899):421-422
Cystic fibrosis is the most common fatal genetic disease affecting caucasians and is perhaps best characterized as an exocrinopathy involving a disturbance in fluid and electrolyte transport. A high NaCl concentration in the sweat is characteristic of patients with this disease; the basic physiological reason for this abnormality is unknown. We have microperfused isolated sweat ducts from control subjects and cystic fibrosis patients, and report here results which suggest that abnormally low Cl- permeability in cystic fibrosis leads to poor reabsorption of NaCl in the sweat duct, and hence to a high concentration of NaCl in the sweat.  相似文献   

7.
The gene responsible for cystic fibrosis (CF) has recently been identified and is predicted to encode a protein of 1,480 amino acids called the CF transmembrane conductance regulator (CFTR). Several functional regions are thought to exist in the CFTR protein, including two areas for ATP-binding, termed nucleotide-binding folds (NBFs), a regulatory (R) region that has many possible sites for phosphorylation by protein kinases A and C, and two hydrophobic regions that probably interact with cell membranes. The most common CF gene mutation leads to omission of phenylalanine residue 508 in the putative first NBF, indicating that this region is functionally important. To determine whether other mutations occur in the NBFs of CFTR, we determined the nucleotide sequences of exons 9, 10, 11 and 12 (encoding the first NBF) and exons 20, 21 and 22 (encoding most of the second NBF) from 20 Caucasian and 18 American-black CF patients. One cluster of four mutations was discovered in a 30-base-pair region of exon 11. Three of these mutations cause amino-acid substitutions at residues that are highly conserved among the CFTR protein, the multiple-drug-resistance proteins and ATP-binding membrane-associated transport proteins. The fourth mutation creates a premature termination signal. These mutations reveal a functionally important region in the CFTR protein and provide further evidence that CFTR is a member of the family of ATP-dependent transport proteins.  相似文献   

8.
The ATP-binding cassette (ABC) superfamily of transport systems now includes over thirty proteins that share extensive sequence similarity and domain organization. This superfamily includes the well characterized periplasmic binding protein-dependent uptake systems of prokaryotes, bacterial exporters, and eukaryotic proteins including the P-glycoprotein associated with multidrug resistance in tumours (MDR), the STE6 gene product that mediates export of yeast a-factor mating pheromone, pfMDR that is implicated in chloroquine resistance of the malarial parasite, and the product of the cystic fibrosis gene (CFTR). Here we present a tertiary structure model of the ATP-binding cassettes characteristic of this class of transport system, based on similarities between the predicted secondary structures of members of this family and the previously determined structure of adenylate kinase. This model has implications for both the molecular basis of transport and cystic fibrosis and provides a framework for further experimentation.  相似文献   

9.
A frame-shift mutation in the cystic fibrosis gene.   总被引:22,自引:0,他引:22  
M B White  J Amos  J M Hsu  B Gerrard  P Finn  M Dean 《Nature》1990,344(6267):665-667
Cystic fibrosis (CF) is a common recessive lethal genetic disorder, affecting 1 in 1,600 Caucasians. The disease causes defective regulation of chloride-ion transport in exocrine cells. Although in all CF families the disease is linked to a locus on chromosome 7q31, there is clinical heterogeneity in the severity of the disease and the age at which it is diagnosed. CF is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. A three-nucleotide deletion (delta F508) causing the loss of a phenylalanine residue in the tenth exon of the CFTR gene has been found on 70% of CF chromosomes. We have now characterized a CF family in which neither parent of the affected individual carries the common mutation, and identified a two-nucleotide insertion in the CF allele of the mother. The mutation introduces a termination codon in exon 13 of the CFTR gene at residue 821, and is predicted to result in the production of a severely truncated nonfunctional protein.  相似文献   

10.
Cystic fibrosis is associated with defective regulation of apical membrane chloride channels in airway epithelial cells. These channels in normal cells are activated by cyclic AMP-dependent protein kinase and protein kinase C. In cystic fibrosis these kinases fail to activate otherwise normal Cl- channels. But Cl- flux in cystic fibrosis cells, as in normal cells, can be activated by raising intracellular Ca2+ (refs 5-10). We report here whole-cell patch clamp studies of normal and cystic fibrosis-derived airway epithelial cells showing that Cl- channel activation by Ca2+ is mediated by multifunctional Ca2+/calmodulin-dependent protein kinase. We find that intracellular application of activated kinase and ATP activates a Cl- current similar to that activated by a Ca2+ ionophore, that peptide inhibitors of either the kinase or calmodulin block Ca2(+)-dependent activation of Cl- channels, and that a peptide inhibitor of protein kinase C does not block Ca2(+)-dependent activation. Ca2+/calmodulin activation of Cl- channels presents a pathway with therapeutic potential for circumventing defective regulation of Cl- channels in cystic fibrosis.  相似文献   

11.
12.
Defective acidification of intracellular organelles in cystic fibrosis.   总被引:37,自引:0,他引:37  
J Barasch  B Kiss  A Prince  L Saiman  D Gruenert  Q al-Awqati 《Nature》1991,352(6330):70-73
The phenotype of cystic fibrosis (CF) includes abnormalities in transepithelial transport of Cl- (refs 1-5), decreased sialylation and increased sulphation and fucosylation of glycoproteins, and lung colonization with Pseudomonas. It is not apparent how these abnormalities are interrelated, nor how they result from loss of function of the CF gene-encoded transmembrane regulator (CFTR). We have previously shown that that the pH of a secretory granule is regulated by the vesicular conductance for Cl- (ref. 11). Here we find defective acidification in CF cells of the trans-Golgi/trans-Golgi network, of prelysosomes and of endosomes as a result of diminished Cl- conductance. Sialytation of proteins and lipids is reduced and ligand traffic altered. These abnormalities can result from defective acidification because vacuolar pH regulates glycoprotein processing and ligand transport. The CF phenotype is similar to that of alkalinized cells and acidification-defective mutatants.  相似文献   

13.
14.
15.
Cystic fibrosis (CF) is a common lethal genetic disease that manifests itself in airway and other epithelial cells as defective chloride ion absorption and secretion, resulting at least in part from a defect in a cyclic AMP-regulated, outwardly-rectifying Cl- channel in the apical surface. The gene responsible for CF has been identified and predicted to encode a membrane protein termed the CF transmembrane conductance regulator (CFTR). Identification of a cryptic bacterial promoter within the CFTR coding sequence led us to construct a complementary DNA in a low-copy-number plasmid, thereby avoiding the deleterious effects of CFTR expression on Escherischia coli. We have used this cDNA to express CFTR in vitro and in vivo. Here we demonstrate that CFTR is a membrane-associated glycoprotein that can be phosporylated in vitro by cAMP-dependent protein kinase. Polyclonal and monoclonal antibodies directed against distinct domains of the protein immunoprecipitated recombinant CFTR as well as the endogenous CFTR in nonrecombinant T84 cells. Partial proteolysis fingerprinting showed that the recombinant and non-recombinant proteins are indistinguishable. These data, which establish several characteristics of the protein responsible for CF, will now enable CFTR function to be studied and will provide a basis for diagnosis and therapy.  相似文献   

16.
A cyclic AMP-stimulated chloride conductance appears when the cystic fibrosis gene is expressed in non-epithelial cells by infection with recombinant viruses. Cyclic AMP-stimulated conductance in this system is mediated by the same ohmic, low-conductance Cl- channel as in human secretory epithelia, but control of this channel by phosphorylation has not been directly demonstrated. Here we report the appearance of the low-conductance Cl- channel in Chinese hamster ovary cells after stable transfection with the cystic fibrosis gene. The channel is regulated on-cell by membrane-permeant analogues of cAMP and off-cell by protein kinases A and C and by alkaline phosphatase. These results are further evidence that the cystic fibrosis transmembrane regulator is a Cl- channel which can be activated by specific phosphorylation events and inactivated by dephosphorylation; they reveal an unsuspected synergism between converging kinase regulatory pathways.  相似文献   

17.
18.
A E Trezise  M Buchwald 《Nature》1991,353(6343):434-437
Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). The principal manifestations of CF include increased concentration of Cl- in exocrine gland secretions, pancreatic insufficiency, chronic lung disease, intestinal blockage and malabsorption of fat, and male and female infertility. Insight into the function of CFTR can be gained by correlating its cell-specific expression with the physiology of those cells and with CF pathology. Determination of CFTR messenger RNA in rat tissues by in situ hybridization shows that it is specifically expressed in the ductal cells of the pancreas and the salivary glands. In the intestine, decreasing gradients of expression of the CFTR gene are observed on both the crypt-villus and the proximal-distal axes. This expression is consistent with CFTR being responsible for bidirectional Cl- transport, secretion in the intestinal crypts and reabsorption in the silivary gland ducts, and suggests that in these tissues CFTR functions as a regulated Cl- channel. In the lung, a broad band of hybridization includes the mucosa and submucosa of the bronchi and bronchioles. In the testis, CFTR expression is regulated during the cycle of the seminiferous epithelium. Postmeiotic expression is maximal in the round spermatids of stages VII and VIII, suggesting that CFTR plays a critical role in spermatogenesis and that deficiency of this function contributes to CF male infertility.  相似文献   

19.
Choi JY  Muallem D  Kiselyov K  Lee MG  Thomas PJ  Muallem S 《Nature》2001,410(6824):94-97
Cystic fibrosis (CF) is a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). Initially, Cl- conductance in the sweat duct was discovered to be impaired in CF, a finding that has been extended to all CFTR-expressing cells. Subsequent cloning of the gene showed that CFTR functions as a cyclic-AMP-regulated Cl- channel; and some CF-causing mutations inhibit CFTR Cl- channel activity. The identification of additional CF-causing mutants with normal Cl- channel activity indicates, however, that other CFTR-dependent processes contribute to the disease. Indeed, CFTR regulates other transporters, including Cl(-)-coupled HCO3- transport. Alkaline fluids are secreted by normal tissues, whereas acidic fluids are secreted by mutant CFTR-expressing tissues, indicating the importance of this activity. HCO3- and pH affect mucin viscosity and bacterial binding. We have examined Cl(-)-coupled HCO3- transport by CFTR mutants that retain substantial or normal Cl- channel activity. Here we show that mutants reported to be associated with CF with pancreatic insufficiency do not support HCO3- transport, and those associated with pancreatic sufficiency show reduced HCO3- transport. Our findings demonstrate the importance of HCO3- transport in the function of secretory epithelia and in CF.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号