首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
郭培涛  席志红 《应用科技》2024,(2):76-81+89
为了提高室内动态场景下定位与建图的准确性与实时性,提出了一种基于目标检测的室内动态场景同步定位与建图(simultaneous localization and mapping, SLAM)系统。利用目标检测的实时性,在传统ORB_SLAM2算法上结合YOLOv5目标检测网络识别相机图像中的动态物体,生成动态识别框,根据动态特征点判别方法只将识别框内动态物体上的ORB特征点去除,利用剩余特征点进行相机位姿的估计,最后建立只含静态物体的稠密点云地图与八叉树地图。同时在机器人操作系统(robot operating system, ROS)下进行仿真,采用套接字(Socket)通信方式代替ROS中话题通信方式,将ORB_SLAM2算法与YOLOv5目标检测网络相结合,以提高定位与建图的实时性。在TUM数据集上进行多次实验结果表明,与ORB_SLAM2系统相比,本文系统相机位姿精确度大幅度提高,并且提高了每帧跟踪的处理速度。  相似文献   

2.
室内动态场景下的同步定位与地图构建(simultaneous localization and mapping, SLAM)系统容易受到运动障碍物的影响,从而导致其位姿估计精度和视觉里程计的稳定性降低。本文提出一种基于YOLOv4目标检测网络的视觉SLAM算法,获取语义信息,并利用LK光流法判断动态特征,在传统的ORB-SLAM2系统上将动态特征点剔除,只使用静态特征点来估计相机的位姿;建立稠密点云地图,并转化成节约内存空间的八叉树地图。在TUM公开数据集上对该方法进行测试和评估,实验结果表明:在动态环境下,该系统与ORB-SLAM2相比,相机位姿估计精度提高83%,且减少了生成的环境地图的存储空间,为后续实现机器人导航具有重要意义。  相似文献   

3.
针对当前视觉同时定位与建图(simultaneous localization and mapping,SLAM)生成的点云地图不能满足路径规划和导航的需要,提出一种室内移动机器人的导航地图制备方法.首先,通过SLAM估计相机位姿,后端优化后生成室内场景的三维点云地图;其次,根据地面移动机器人的运动约束及结构特点分情况讨论,推导点云相对于地面的二维坐标,同时对点云进行地面与障碍的分离、截取与筛选;最后,根据栅格占据状况有序构建出导航地图.实验结果表明,基于点云坐标的障碍物截取准确度高于地面拟合截取方法,所建地图精度与完整度均高于传统方法.室内移动机器人能基于该地图进行路径规划与导航.  相似文献   

4.
地下车库中纯视觉的即时定位与建图(simultaneous localization and mapping, SLAM)方法无法克服光线不足和弱特征纹理两大不利因素,为此,提出一种基于VINS-Mono框架下改进的视觉惯导融合算法,把原算法中提取Harris角点的方法改进为提取灰度值陡变的像素点,并使用非线性优化方法在初始化阶段进行视觉位姿估计。后端采用滑动窗口的形式建立先验估计残差、惯性测量单元(inertial measurement unit, IMU)残差以及基于灰度值不变原理构建的视觉残差的联合残差模型,进一步提升了系统底层变量的优化效果,从而提高算法的定位准确度。通过基于EuRoc数据集的仿真实验和地下车库实际场景的实车实验,验证了所提算法的鲁棒性和精确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号