首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 538 毫秒
1.
目的研究Li-O_2电池阴极放电反应的具体路径,解决锂空气电池ORR反应路径不明确的问题.方法运用分子动力学原理,建立Li-O_2电池阴极催化剂Pt(1 1 1)表面及氧分子模型;根据密度泛函理论和第一性原理,针对最有效的氧吸附模型进行反应路径分析.结果吸附模型1是氧分子吸附在Pt(1 1 1)表面吸附的主要形式;Li离子和O_2在阴极催化剂Pt(1 1 1)表面遵循2e反应路径.结论阴极催化剂Pt(1 1 1)表面初始生成Li_2O_2,溶解氧供应充足时会继续生成Li_2O_2团簇,溶解氧供应不足容易生成不可逆的Li_2O产物;研究结果对分析Li-O_2电池反应机理和改善Li-O_2电池的性能具有重要价值.  相似文献   

2.
目的研究燃料中添加不同浓度的CO2对高温质子交换膜(HT-PEM)燃料电池性能的影响.方法运用燃料电池测试系统对HT-PEM燃料电池的伏安特性和交流阻抗特性进行测试,并采用等效电路分析获得了HT-PEM燃料电池的等效元件,分析了重整燃料H2中CO2含量对HT-PEM燃料电池伏安特性和交流阻抗特性的影响.结果氢燃料中的CO2对HT-PEM燃料电池有一定的毒化作用,主要体现在CO2吸附在催化剂表面,形成了Pt-CO键,降低了电池的开路电压,导致浓差极化加剧.如果通入纯氢气燃料,电池性能可恢复至95.3%水平.结论提高燃料中CO2的含量,燃料电池的法拉第阻抗增大,电池的性能降低;随着温度的升高,电池系统对CO2的容忍度降低;CO2对电池性能的影响可以得到恢复.  相似文献   

3.
采用无机胶体法制备了用于质子交换膜燃料电池的Pt3Cr/C催化剂.研究了灼烧温度对催化剂性能的影响.X-射线衍射分析表明,催化剂中Pt3Cr/C中,由于Pt与Cr合金化而使晶格收缩、Pt-Pt间距减小,这有利于氧分子离解吸附,从而提高氧的还原反应速度.循环伏安测试结果表明,Pt3Cr/C催化剂的活性优于商品Pt/C催化剂.  相似文献   

4.
采用密度泛函理论研究了CO在Pd/Pt(111)双金属表面的吸附性质.分别考虑了Pd原子全部取代表层Pt原子以及部分取代表层和次表层Pt原子的情况,分析了CO吸附在双金属不同表面的吸附能、C-O和C-Pt键长及振动频率.结果表明无论是在表层或者次表层加入Pd原子,相比CO吸附在干净Pt(111)表面情况,CO在双金属表面的吸附能几乎没有变化,而键长、频率也未见明显改变.这些吸附特性说明Pt催化剂的抗CO中毒性质主要依赖于最外层的Pt原子,临近的Pd原子可能会对其产生影响,但是未见明显变化.  相似文献   

5.
目的研究氢燃料中存在NH3杂质时对高温质子交换膜燃料电池的影响.方法使用燃料电池测试系统测试了HT-PEM燃料电池的极化曲线和交流阻抗图谱,采用等效电路法获得了HT-PEM燃料电池的等效电路元件,并对被NH3毒化后的电池催化剂层进行了电子显微扫描,分析了氢燃料中NH3质量浓度、电池温度和使用时间对HT-PEM燃料电池性能的影响.结果氢燃料中NH3的存在改变了电池电极电化学反应界面的结构,阻碍了质子的传递,导致电池性能下降,并且被NH3毒化后HT-PEM燃料电池再通入纯净氢气后电池性能仍继续下降.结论氢燃料中的NH3对HT-PEM燃料电池有很强的毒化作用,主要体现在降低了电池电极电化学反应界面,同时,被NH3毒化后HT-PEM燃料电池性能很难恢复,这种损害是不可逆的.  相似文献   

6.
采用第一性原理密度泛函理论,对乙二醛在Au(111),Pd(111),Pt(111)面的吸附进行系统研究.结果表明,乙二醛和乙醛酸在Au(111)表面的吸附最弱,在Pd(111)表面上的吸附能最高,生成的乙醛酸不易脱附,容易被进一步氧化生成草酸.Pt催化剂性能最佳,乙二醛强化学吸附在Pt(111)面,C-H键断裂,C-C键稳定,易被氧化成目标产物乙醛酸,同时,目标产物乙醛酸在Pt催化剂表面上易脱附,氧化程度小,选择性高,与实验结果吻合较好.  相似文献   

7.
为了降低燃料电池的高成本,必须寻找一种既能减小贵金属铂的担载量,又能进一步提高氧还原反应催化活性的新型合金催化剂.基于密度泛函理论,建立了Pt_4和Pt_3Ni正四面体结构的金属团簇模型,选用氧掺杂石墨烯作为载体,四面体金属团簇以正金字塔形式稳定吸附在缺陷位正上方,在负载的金属团簇上进行氧分子的吸附和连续加氢模拟氧还原反应过程,并进行热力学计算与分析.结果表明,氧在Pt_4-OG和Pt_3Ni-OG上均以分子形式吸附并被活化,Pt_3Ni-OG对氧分子的活化作用更强;第1步加氢反应,在Pt_3Ni-OG上形成共吸附的OH*和O*时体系的能量比形成亚稳态的HOO*时低2.37,e V.热力学分析表明,氧还原反应在Pt_3Ni-OG上的主要反应路径为底位吸附路径;在Pt金属中引入Ni,使随后在吸附在Pt_3Ni-OG上的氧分子上发生的加氢反应所需的能量降低.同时Pt_3NiOG和Pt_4-OG催化氧还原反应的自由能计算结果也表明,Pt_3Ni-OG上氧还原反应中间体OH*的吸附作用减弱,进而后续形成H_2O*的反应所需的能量降低.这表明PtNi合金的氧还原反应的催化活性较Pt提高.本研究对氧还原反应高效电催化剂的设计具有指导意义.  相似文献   

8.
采用海藻酸铵辅助法制备了Sn杂化Al_2O_3球形颗粒,并通过浸渍法获得Pt/Snx-Al_2O_3-X催化剂.采用氮吸附-脱附、XRD、NH3-TPD、XPS与TEM,研究了Sn杂化量与煅烧温度对催化剂孔结构、晶相、表面酸性、Sn价态、催化剂表面Pt颗粒大小的影响,并评估了催化剂在丙烷脱氢过程中的反应活性.实验结果表明,Sn的引入没有改变γ-Al_2O_3的晶相,但是可以提高催化剂的热稳定性;随着煅烧温度的提高,催化剂孔容、孔径明显增加,而比表面积与表面总酸量明显减少;Pt/Sn15-Al_2O_3-800催化剂表面Pt、Sn与γ-Al_2O_3之间相互作用较强,Sn0含量较低,同时Pt粒子平均粒径最小,其丙烷脱氢活性也最好,收率可达35%,以上.  相似文献   

9.
改善阳极水管理是碱性阴离子交换膜(AEM)燃料电池重要的研究课题.在质子交换膜燃料电池(PEMFC)阴极研究中,发现改变催化层内部结构能够有效改善阴极的水管理能力,然而目前关于AEM燃料电池催化层相关研究较少.本研究针对AEM燃料电池阳极水分布特点,利用Pt/C和PtRu/C催化剂在碱性条件下氢氧化反应(HOR)的活性差异,设计了双层催化剂结构.当活性较高的PtRu/C层靠近气体扩散层,活性较低Pt/C层靠近AEM时,双催化层形成与单一催化层水分布相反的活性梯度,能够有效改善水分布,在测试温度为30℃和100%相对湿度时,获得较高峰值功率密度88.1 m W/cm~2.研究成果为碱性膜燃料电池的阳极催化层结构设计提出一种新思路.  相似文献   

10.
在固定床反应器上,研究Ga促进的Pt/WO3/ZrO2(Pt/WZ)催化剂上正庚烷异构化,并采用H2程序升温脱附质谱(H2TPDMS)技术研究Pt/WZ上引入Ga对H2吸附能力的影响.结果表明,引入Ga明显提高了Pt/WZ催化剂上正庚烷异构化反应的活性;随反应温度的升高,正庚烷异构化反应转化率增大,反应6h以内,该系列催化剂不失活;体积空速1.0h-1,氢油摩尔比14时,Ga的质量分数1.0%的Pt/GWZ催化剂上,正庚烷转化率和异庚烷选择性达到最佳值,分别为81.5%和93.6%.H2TPDMS结果表明,引入Ga提高了Pt/WZ催化剂对H2的吸附能力,有利于提高该催化剂上正庚烷异构化反应活性.  相似文献   

11.
燃料电池阴极氧还原反应十分缓慢,通常需要贵金属催化剂加快反应速率。目前,燃料电池阴极氧还原催化剂主要为铂及其合金纳米颗粒,但由于其成本高,自然资源有限,稳定性差,难以大规模应用。基于过渡金属与氮共掺杂的碳材料可作为氧还原反应有效且廉价的候选催化剂,受到了广泛的关注。本文研究以普鲁士蓝纳米颗粒为模板,在其表面原位聚合吡咯,得到核-壳结构的普鲁士蓝/聚吡咯纳米颗粒,再以该纳米颗粒为前驱体,经过高温裂解制备铁氮共掺杂碳纳米颗粒(Fe-N-CNPs-X,X代表高温裂解温度)。Fe-N-CNPs-X催化剂粒径约为80 nm,Fe-N-CNPs-900催化剂在碱性电解质溶液中显示出优异的氧还原催化活性:-0.17 V电位下即可产生明显的氧还原电流,接近Pt/C催化剂的峰电位(-0.15 V);起始还原电位和半波还原电位(E_(1/2))分别为-0.03 V和-0.11 V,极限电流密度为4.90 mA/cm~2,与Pt/C的起始还原电位(-0.02 V)和半波还原电位(-0.10 V)以及极限电流密度(4.86 mA/cm~2)相当;与商业Pt/C催化剂相比,Fe-N-CNPs-X催化剂具有更优的稳定性和甲醇耐受性。上述研究结果为铁氮共掺杂碳材料的实际应用奠定了基础。  相似文献   

12.
采用溶液共混和高温热解两步法,以聚苯并咪唑(PyPBI)和三聚氰胺(Mela)为复合氮源,中度氧化的碳纳米管(moCNTs)为碳源,醋酸钴为金属源,制备出一系列moCNTs/PyPBI/Mela(Co)催化剂,对其进行TEM、TGA、XRD、XPS表征和电化学活性测试,结果表明:当moCNTs/PyPBI(Co)前驱体与三聚氰胺的质量比为1∶2,热解温度为800℃时,催化剂的起始还原电位可达到0.87V(vs.RHE),接近于商业Pt20%/C催化剂。moCNTs/PyPBI/Mela(Co)催化剂催化性能的提高归因于其结构中的吡啶氮与钴结合形成Co-N活性位点,增加对O2的吸附能力,弱化了O—O键,促进氧分子的还原反应,促使ORR反应通过4e-途径进行。  相似文献   

13.
使用A+1/2B2→0模型,研究了在Pt(100)上的CO催化氧化反应.模型考虑了表面重构条件,以及吸附粒子的相互作用和反应中的势垒,模拟得到了不同参数对应的各个温度下的反应曲线.对于某些参数,模拟结果与实验结论相一致,并得到如下结论:势垒和表面重构对反应具有重要的作用.分析了吸附粒子的分布和浓度,以及反应产物的浓度;解释了反应曲线中从高反应率向低反应率跃变.  相似文献   

14.
针对直接甲醇燃料电池阴极常用的铂基催化剂易中毒、选择性差等问题,以Fe2+为模板剂控制合成了酞菁铁配合物催化剂.红外光谱测试表明,Fe2+与酞菁中的N形成了配键.研究结果表明,随着温度的升高,酞菁铁对氧还原反应的电催化活性逐渐增强,且对甲醇氧化反应无催化活性,证明酞菁铁具有较好的催化选择性.  相似文献   

15.
研究了锑烯对燃料电池阴极氧还原反应中间物O,OH,O_2,OOH的吸附特性,通过对吸附能、吸附距离、键长及能带、态密度、电荷转移的分析,比较了锑烯对各中间物的吸附作用,模拟了氧还原反应过程,给出了各步反应自由能变化的趋势图.结果表明:O,OH,O_2,OOH在锑烯上最稳定吸附位的吸附能分别为3.81,2.43,1.59,1.04 eV;锑烯上的氧还原反应过程存在四电子途径和二电子途径,且自由能逐渐降低,有自发进行的趋势;锑烯与OOH存在较强的相互作用,这对氧还原反应第一步OOH的吸附及第二步O—O键的断开是有利的,对OH适度的吸附作用也不会限制OH与H结合生成H_2O分子进而脱附的过程.以上结果表明,锑烯具有催化燃料电池阴极氧还原反应的潜力,这为实验上进一步探索锑烯作为氧还原反应电催化材料提供了理论参考.  相似文献   

16.
Pt是直接甲醇质子交换膜燃料电池最有效的催化剂 ,由于Pt的价格昂贵 ,资源稀少 ,因此 ,目前的研究主要集中在如何提高催化剂的化活性 ,降低催化剂的载量[1] .从理论上讲 ,在指定反应物和催化剂物种的情况下 ,为了提高表观电流密度 ,必须增加催化剂的比表面积 ,即要减小Pt粒子的大小 ,因此 ,以前的研究认为Pt粒子越小 ,催化剂表面积越大 ,催化剂拥有更多的活性中心 ,应该对甲醇的电催化氧化有利[2 ] .然而 ,Frelink等人[2 ] 研究不同粒径大小的Pt/C催化剂对甲醇的电催化氧化活性时发现 ,在 1~ 4 5nm范围内 ,随着Pt粒子粒径的增加 ,Pt/C…  相似文献   

17.
用沉积-沉淀-水合肼还原法制备氧化石墨烯(GO)、石墨(graphite)、酸化石墨(graphite-H)负载的Pt催化剂,研究了它们对肉桂醛选择性加氢生成肉桂醇反应的催化性能,并对该催化剂进行多晶X射线衍射、透射电镜、拉曼光谱、N2 吸附和X射线光电子能谱表征.结果表明:3种制备的催化剂中,负载Pt后氧化石墨烯被水合肼还原生成还原氧化石墨烯(RGO),具有最高的比表面积,表面Pt的含量较低,所得Pt颗粒的粒径最小,具有最高的肉桂醛转化率;RGO 含有较多的酸性含氧基团C-OH 及COOH,有利于肉桂醛的C=O吸附,因此Pt/RGO具有最高的肉桂醇选择性.此外,还考察了Pt/RGO 催化性能与温度、氢气压强、反应时间的关系.实验表明,最佳反应温度为85℃,时间为3h,H2 压力为2.0MPa.  相似文献   

18.
水在金属镁表面吸附的第一原理研究   总被引:3,自引:2,他引:1  
采用第一性原理赝势平面波方法,通过Materials Studio软件中的castep模块,研究了水分子在Mg(0001)表面吸附行为,揭示了镁合金钝化机理。研究了水分子在Mg(0001)表面顶位T1、桥位B2、穴位H3、穴位F4吸附情况,重点研究水分子置于T1位置的3种情况,即:水分子平行镁表面T1p,水分子垂直表面T1v,水分子所在平面与镁表面有一定倾斜T1i。计算给出了吸附能、电荷密度、差分密度、水的键长键角,分析了结构的稳定性和原子间的成键情况。结果表明:水分子在Mg(0001)表面吸附时候,氧原子与表面成键,且在顶位吸附且吸附构型是倾斜时最稳定。吸附能为-0.429 3 eV(=-41.21 kJ/mol),并且吸附能大于40 kJ/mol,吸附为化学吸附。吸附过程中表面镁原子的电子向水分子转移,使镁表面电位向正方向移动,会使镁产生钝化。吸附使水分子键长增长,键角增大,即水中各原子间作用减弱,可与Mg形成水合分子或MgO、或Mg(OH)2,从而发生钝化。  相似文献   

19.
用TPD和TPR技术考察了K的添加对CO选择性氧化催化剂Pt/γ-Al2O3的表面吸附性能及还原性能的影响,结合催化剂的活性进行了讨论. 结果表明,添加适量K2O有助于增加弱吸附态CO的数量,并影响Pt的还原过程,使Pt变得难于还原. 当w(K2O)=3.4%时,CO的低温脱附量最大,催化剂还原温度最低. 同时,120 ℃时转化率可达到90%以上.  相似文献   

20.
Pt/CeO_2催化乙醇芳构化的研究   总被引:1,自引:1,他引:0  
研究了Pt/CeO2催化剂上乙醇芳构化反应.考察了Pt的含量、空速和反应温度对乙醇转化率和苯选择性的影响,并初步探讨了催化反应机理.结果表明,当Pt的含量为1%,空速为8.1 h-1,反应温度450℃时,催化剂达到最好的效果,乙醇转化率为63.28%,苯的选择性为15.13%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号