首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
穿越断层的埋地管道在地震等外力作用下会发生屈曲、断裂等破坏,研究走滑断层作用下埋地管道的应变特性,对管道工程的设计和防护等具有重要意义.借助前期设计的场地变形组合试验装置,针对走滑断层的作用特点,模拟穿越此断层的埋地管道受力情况,测得随断层错动管道的应变分布及管道周边土体压力变化,分析管径变化对应变和管周土压力的影响,得出管道变形区域的范围.试验结果表明:断层面附近的管道在断层走滑错动过程中受到轴向拉力或压力的作用,其变形沿断层面与管道交点近似呈中心对称;距离断层较远的管道随土体一起运动,不会产生变形,即管道变形在断层附近的一定区域内;管径越大,受断层运动影响的管道变形区域越小;随断层错动位移量的增大,断层附近管道周围土压力和管道的轴向应变都增大,且随管道直径的增大管周土压力和轴向应变减少.  相似文献   

2.
穿越逆断层的埋地管道在断层错动过程中呈现的失效样式复杂多样,根据逆断层错动管道受力特征分为压缩屈曲失效、Euler梁失稳失效两种失效模式,但对两种失效出现的工况认知不足.在管道抗震计算中通常借用管道在走滑断层错动时的反应分析方法来估算管道在逆断层中的变形状况,避免梁式失稳靠满足一定的埋深来保障.本研究利用ANSYS通用有限元程序建立了钢制埋地管道地震反应的有限元模型,以分析逆断层作用下管道的失效模式.该模型适合分析逆断层倾角≤80°的情况.计算结果显示:逆断层倾角≤45°,管道发生屈曲失效,管道失效部位在管道与断层破裂线相交处.倾角在50—70°之间,管道存在两种失效可能:当断层垂直位错量在0.7—1.0m之间时,管道出现失稳失效;当位错量大,错动速度快时,管道在与断层破裂线相交处发生屈曲失效.倾角在75—80°之间,管道屈曲失效和失稳失效可能相伴发生,屈曲失效部位出现在两处:(1)管道在与断层破裂线相交处失效;(2)失稳隆起处发生弯折.  相似文献   

3.
利用ANSYS程序建立的三维管土非线性有限元模型,计算分析了断层基岩上覆土层的变形破裂形式、土层厚度及土层土质的硬度对埋地管道的影响.结果表明,埋地管线发生大变形及失效的位置由上覆土层的破裂形式决定,穿越土层发生塑性变形及破裂区域的管段是管道发生塑性变形的管段.当断层倾角发生接近于90°的错动时,随上覆土层破裂的发展,埋地管道产生两处塑性变形区段.上覆土层越厚,埋地管道发生塑性变形的长度越长,变形值减小.埋在土质较硬土层中的管道发生塑性变形的管段长度短,极限应变值大.  相似文献   

4.
埋地燃气输送管道服役环境复杂,其中滑坡地质灾害严重威胁管道的服役安全。本文以埋地聚乙烯(PE)管道为研究对象,利用ABAQUS有限元软件模拟了横向滑坡载荷作用下的管道损伤行为,探讨了滑坡参数(滑坡体位移量)、管道埋深以及内压对PE管力学性能的影响。研究结果表明:滑坡作用下埋地PE管最大偏移、最大Mises应力和最大主应变均位于管轴向横截对称面上。管道最大Mises应力随滑坡位移量的增大而增大,管底为管道最终屈服点,屈服主要原因为管横截面被压扁变形。管道未屈服时,最大Mises应力随内压的增大呈现先减小后增大的现象,最大主应变随内压的增大而增大。最大Mises应力和最大主应变均随埋深的增大而增大。  相似文献   

5.
考虑压缩失效时埋地管线跨地震断层的最佳交角研究   总被引:1,自引:0,他引:1  
在断层错动下埋地管线跨断层的最佳交角研究方面,已有方法均以管道受拉失效为基本假定,未考虑管道压缩失效的情况.本文利用管体壳模型有限元方法进行了跨断层管线在断层错动下管体反应的计算分析,在考虑管材特性、管道尺寸及地基土特性多种影响因素的情况下,探讨了在仅控制轴向拉伸应变值和同时控制轴向拉伸应变值与轴向压缩应变值两种管道失效控制准则下管道的失效问题,分析了不同失效控制准则对管线跨断层的最佳交角的影响.发现失效控制准则是确定最佳交角值的关键因素,而且基于同时考虑拉伸和压缩失效的控制准则,管线跨断层的最佳交角应在70°左右.  相似文献   

6.
结合大量地震断层的案例,针对逆断层倾角为75°,60°,45°三种工况通过模型试验研究不同倾角逆断层粘滑错动下隧道应变分布规律和整个破坏过程.试验结果表明:断层倾角越小,上盘范围内隧道顶部的纵向拉应变越大,并且拉应变进入过载状态时的错动位移值越小.当断层倾角为75°时,隧道的主要破坏形式为直接剪切破坏;当断层倾角为45°时,隧道的破坏形式以弯曲拉破坏为主;45°倾角工况下隧道的破坏范围为上盘距离断层面2.0 D(D为隧道洞径)至下盘距离断层面0.2 D,75°倾角工况下隧道的破坏范围为上盘距离断层面0.8 D至下盘距离断层面0.4 D.  相似文献   

7.
跨断层埋地管道在断层错动下力学模型设计和受力分析一直是生命线工程的前沿问题.弹簧-管道-土体模型中,断层每侧沿管道方向的近断层土体采用实体建模,此范围内的土体与管道相互作用采用接触进行模拟,远离断层的管道与土体相互作用采用等效非线性弹簧模拟.采用有限元分析软件对模型进行实现,有限元模型考虑了管道与土体的材料非线性、几何非线性,管道采用四节点壳单元.分析了断层破碎带宽度、断层错距、管道埋深、直径,壁厚对管道的受力影响,得出一些有益结论.  相似文献   

8.
考虑薄壳的大变形和管土的相互作用,建立埋地管道的管土耦合非线性有限元模型,分析管道在横向滑坡作用下的响应规律,讨论了滑坡宽度、滑坡位移、滑坡角度、管道埋深、管道内压等相关工程参数对分析结果的影响,并应用应变准则对管道进行安全评价.结果显示,管道的高应力、应变主要出现在滑坡中间区域及滑坡区与非滑坡区交界处;相同的滑坡位移下,滑坡宽度越小,管道的轴向拉应变越大;滑坡角度越小,管道的轴向拉应变越大;在相同的滑坡规模下,管道轴向拉应变随内压、埋深的增加而不断升高.分析结果可为埋地管道的抗震设计和施工提供参考.  相似文献   

9.
目的针对内部载有液体并且埋置地面以下某一深度或者水下管道健康监测的难点问题,推导出充液埋地管道超声导波频散曲线方程,用来确定管道健康监测的激发频率和模态.方法利用Navier-Stokes方程在势函数中耦合一个附加的位移场方程并引进第二类Hankel函数,推导出充液埋地管道的频散曲线方程并进行试验验证.结果通过埋地充液状态下管道试验系统测得的群速度和衰减值与推导出的频散曲线方程的理论值相差1.05%,基本符合.结论附加位移场方程可以模拟超声导波在土中传播情况,第二类Hankel函数可以表征波的能量从管中扩散到很远距离并且逐渐衰减消失的这种特性进而推导出超声导波在充液埋地管道中传播的频散和衰减曲线,根据频散曲线可以确定管道健康监测激发频率和模态.  相似文献   

10.
为研究断层作用下埋地管道的局部压溃和起皱行为,以黄土地层埋地管道为例,建立了管土耦合数值计算模型,分析了逆断层作用下埋地管道的变形及局部屈曲过程,研究了内压、径厚比及地层位错量对管道局部屈曲模式的影响规律。结果表明,随着地层位错量增大,断层面两侧管道出现应力集中,并逐渐演化为局部屈曲,埋地管道变形曲线由S形变为Z形,断层面两侧的管道变形并非呈对称或反对称分布,上盘区的管道屈曲现象较下盘区更为严重;地层位错量大于3倍管径时,管道轴向应变迅速增大;无压管道和低压管道的局部屈曲模式为压溃,而随着内压的增大,管壁屈曲模式由压溃变为起皱,且管道起皱幅度随着内压的增大而增大;上盘区管段屈曲部位与断层面之间距离受内压、径厚比影响较小,而压溃模式下下盘区屈曲部位与断层面之间的距离随着内压的增大而减小,起皱模式下二者之间的距离随着内压的增大而增大;不同地层位错量作用下,管道最大轴向应变随径厚比的变化呈现出不同变化规律。  相似文献   

11.
场地的不均匀沉陷是埋地管线破坏的重要原因之一.运用均值一次二阶矩法和ANSYS中的蒙特卡罗法对埋地管线在地面沉陷位移、材料性能参数、内水压力等随机变量下的可靠度进行计算分析,得到考虑和不考虑管道内水压力时的可靠度系数和失效概率.结果表明,地面沉陷位移的变异性对沉陷区埋地管线的可靠度有着十分重要的影响,与不考虑管道内水压力作用的结果相比,考虑管道内水压力时的失效概率较大,可靠度系数较小;管道壁厚和直径的变异性对沉陷区埋地管线的可靠度也存在着不可忽视的影响.  相似文献   

12.
为研究埋地分段管线在地震断层作用下的破坏机制,本文以承插式PVC管为例,建立了埋地分段管线在断层作用下的有限元模型.通过改变断层与管线的交角、断层通过管线的位置,逐步施加断层位移量,对管线的破坏模式进行归纳,结果表明:当30°≤β≤45°时,管线的破坏模式主要为接口拉脱破坏;当60°≤β≤90°时,管线的破坏模式主要为管体拉伸破坏;当105°≤β≤150°时,管线的破坏模式有管体破坏、接口弯曲破坏和接口压裂破坏.研究认为,当75°≤β≤90°时,管线在受拉伸的情形下,能抵御较大的断层地面变形.  相似文献   

13.
以乌鲁木齐地铁隧道穿越西山活动逆断层工程为例,建立三维弹塑性有限元模型.首先模拟分析了逆断层错动作用下隧道二次衬砌塑性应变发展过程,拉压损伤因子、剪切应变的横向及纵向分布规律,计算了混凝土的裂缝宽度;其次研究了不同错动位移、隧道底部距围岩交界面不同垂直距离及不同破碎带宽度的结构损伤规律,最后进行了设置柔性接头的减灾效果研究.结果表明:二次衬砌结构破坏首先出现在拱顶;然后是拱底,最后在拱腰处累积.破裂面附近拱腰处发生拉压剪的共同破坏;远离破裂面上盘拱顶,破碎带拱底处发生受拉破坏;远离破裂面上盘拱底,破碎带拱顶处发生受压破坏.基于混凝土裂缝得到隧道拉裂破坏的严重与轻微受损区分别为10 m和30 m.错动位移越大,结构受损越严重;隧道底部距围岩交界面垂直距离越大,土层越厚,耗散能量越多,结构受损越轻;破碎带宽度越大,隧道破坏越严重,当破碎带宽度达到26 m时,破碎带宽度对隧道的影响基本保持稳定.设置柔性接头可以显著降低结构的损伤,基本满足在设防错动位移下的设计要求.  相似文献   

14.
针对正断层错动引起的地铁隧道变形破坏仍缺乏有效的理论预测模型的情况,基于不排水条件下上覆土体的变形机理,建立地铁隧道变形的计算方法.理论模型表明,影响隧道衬砌纵向线应变的参数有隧道半径、土层厚度、基岩断层错动量、断层倾角、隧道埋置深度和形状参数.正断层错动影响下,隧道拱顶衬砌分别在基岩下盘和基岩上盘一侧出现受拉区和受压区.而隧道拱底衬砌则分别在基岩下盘和基岩上盘一侧出现受压区和受拉区.随着隧道埋深的增加,需要进行拉裂破坏加固的范围逐渐缩小,并向基岩断层附近趋于集中.而随着基岩断层倾角的增加,隧道拉裂破坏加固区域则往基岩上盘一侧偏移,但加固区域的大小范围受断层倾角的影响并不显著.  相似文献   

15.
针对含初始椭圆度缺陷的海底管道在弯矩和水压联合作用下的屈曲破坏问题,基于薄壁假定,选择能够描述管道应变和曲率随位移变化的几何方程,采用流动理论建立应力增量与应变增量之间的关系,采用三角级数对位移函数进行离散,列出管道的初始椭圆度缺陷的形式,最终基于虚功原理建立了复杂载荷作用下管道的理论模型.通过控制轴向曲率和外部水压的增量及加载顺序,在MATLAB中对由虚功原理推导出的非线性方程组进行数值求解,从而得到管道在不同加载路径下的极限承载力.同时运用有限元计算软件,在合理控制了刚体位移和边界条件的基础上实现对弯矩和水压载荷的分步加载,得到了弯矩和水压联合作用下的管道有限元模型,计算管道的承载性能并与理论模型进行对比,验证了理论模型的准确性.之后,以管道缺陷截面在压溃瞬间的椭圆度为计算指标,采用有限元方法分别计算不同加载路径下的管道破坏形式,从而对弯矩和水压联合作用下的管道压溃破坏机理进行探究.研究结果表明:弯矩载荷对管道承压能力的削弱作用主要体现在弯矩对Mises应力和截面椭圆度的增大两个方面,在弯矩载荷较小时,椭圆度的影响起主要作用;外压—弯矩加载路径下管道的承载性能较低的原因是缺陷截面在压溃瞬间的椭圆度较弯矩—外压加载路径大.  相似文献   

16.
地面不均匀沉降会使埋地管道的受力状态发生变化,也是埋地管道遭受破坏而引发各类事故的重要原因.针对4种不同管材的管道建立了管道?土体一体化模型,采用有限元分析软件ABAQUS进行分析.对于钢管和PE管所代表的整体式管道主要分析其管道应力和应变响应,而对于球墨铸铁管和灰口铸铁管所代表的承插式管道主要分析其接口变形情况.探究...  相似文献   

17.
针对采空区土体沉降严重威胁埋地输气管道安全运行的状况,对土体沉降后管道的受力进行分析,基于管—土相互作用单元并结合三向土模型弹簧,运用有限元分析软件对土体沉降下埋地输气管道进行数值模拟,主要分析了埋深、采深与采厚对管道应力、位移和应变的影响.模拟结果表明:在采空塌陷区,管道覆土厚度的变化对管道的影响并不是主要的;相同采厚下,采深变化引起的管道力学特征值的改变量相差较小;相同采深下,随着采厚的增大,管道的各项力学特征值均有所增加.  相似文献   

18.
管道通过不同矿区,矿层特征不一,开采工况不同,对管道造成的沉降不同.为得出采空区地表沉陷对埋地输气管道位移量的影响,运用ABAQUS软件,结合三向土弹簧非线性模型,建立有限元计算模型,分析了不同开采深度及开采厚度下地表变形情况,管道竖向位移和水平位移在不同开采厚度下的变化规律,以及管道最大位移量随开采厚度的变化情况.研究结论对穿越采空区埋地输气管道的风险评价和维护措施的制定具有一定参考价值.  相似文献   

19.
为研究和改善多功能锚杆钻机钻桅和动臂的力学性能,采用SolidWorks对钻机工作机构进行建模,并对钻桅和动臂的受力情况进行计算,最后通过SolidWorks Simulation对钻桅和动臂模型进行有限元分析.研究结果表明:钻桅和动臂的应力安全系数均在2以上且最大位移值在安全范围内;钻桅箱体与滑轨焊接处需要加强;钻桅变幅油缸与动臂连接铰耳处筋板需要加强.将有限元分析方法应用于多功能锚杆钻机设计,为产品研发与优化提供了重要依据.  相似文献   

20.
基于斯潘格勒理论,简化了有限元分析中管土间复杂的相互作用.通过最小二乘法确定了有限元建模中的变量参数最大土压,从而建立了呈抛物线分布的水平静土压模型,实现了埋地柔性管线的有限元迭代计算;分析了其埋设深度和土体力学性能对埋地管道的径向与轴向变形的影响,以及地基差异引起的管道沉降问题.结果表明:该方法能合理地反映出土体与结构的相互作用,获得埋地柔性管道的应力、应变等结果,可应用于长距离埋地柔性管道和管件的设计及结构设计.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号